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ABSTRACT

Metin B. Ahiskali
DECISION BASED DATA FUSION OF COMPLEMENTARY FEATURES

FOR THE EARLY DIAGNOSIS OF ALZHEIMER'S DISEASE
2008/09

Robi Polikar, Ph.D.
Master of Science in Engineering

As the average life expectancy increases, particularly in developing countries, the prevalence

of Alzheimer's disease (AD), which is the most common form of dementia worldwide, has

increased dramatically. As there is no cure to stop or reverse the effects of AD, the early

diagnosis and detection is of utmost concern. Recent pharmacological advances have shown

the ability to slow the progression of AD; however, the efficacy of these treatments is

dependent on the ability to detect the disease at the earliest stage possible. Many patients are

limited to small community clinics, by geographic and/or financial constraints. Making

diagnosis possible at these clinics through an accurate, inexpensive, and noninvasive tool is

of great interest. Many tools have been shown to be effective at the early diagnosis of AD.

Three in particular are focused upon in this study: event-related potentials (ERPs) in

electroencephalogram (EEG) recordings, magnetic resonance imaging (MRI), as well as

positron emission tomography (PET). These biomarkers have been shown to contain

diagnostically useful information regarding the development of AD in an individual. The

combination of these biomarkers, if they provide complementary information, can boost

overall diagnostic accuracy of an automated system.
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EEG data acquired from an auditory oddball paradigm, along with volumetric T2

weighted MRI data and PET imagery representative of metabolic glucose activity in the brain

was collected from a cohort of 447 patients, along with other biomarkers and metrics relating

to neurodegenerative disease. This study in particular focuses on AD versus control

diagnostic ability from the cohort, in addition to AD severity analysis. An assortment of

feature extraction methods were employed to extract diagnostically relevant information from

raw data. EEG signals were decomposed into frequency bands of interest through the

discrete wavelet transform (DWT). MRI images were preprocessed to provide volumetric

representations of specific regions of interest in the cranium. The PET imagery was

segmented into regions of interest representing glucose metabolic rates within the brain.

Multi-layer perceptron neural networks were used as the base classifier for the augmented

stacked generalization algorithm, creating three overall biomarker experts for AD diagnosis.

The features extracted from each biomarker were used to train classifiers on various subsets

of the cohort data; the decisions from these classifiers were then combined to achieve

decision-based data fusion.

This study found that EEG, MRI and PET data each hold complementary information

for the diagnosis of AD. The use of all three in tandem provides greater diagnostic accuracy

than using any single biomarker alone. The highest accuracy obtained through the EEG

expert was 86.1±3.2%, with MRI and PET reaching 91.1+3.2% and 91.2±3.9%, respectively.

The maximum diagnostic accuracy of these systems averaged 95.0±3.1% when all three

biomarkers were combined through the decision fusion algorithm described in this study.

The severity analysis for AD showed similar results, with combination performance

exceeding that of any biomarker expert alone.
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CHAPTER I

INTRODUCTION

Modern medicine has increased the average life expectancy of individuals, particularly

those in developing countries. In the United States alone, the average life expectancy of

an individual has risen from 47.3 years to 77.8 years over the last century [1]. Society

has arguably benefitted from this increase in life expectancy-more individuals are living

healthier and longer lives. However, there are other medical consequences to such

advances. As the average life expectancy increases, the prevalence of neurodegenerative

diseases also increases. Within the most populous generation in American history

(commonly referred to as the "baby boomers" and consisting of over 78 million

individuals), the frequency of elderly-targeted diseases is starting to increase

dramatically. Every minute, approximately 7 people from this generation are turning 50,

with almost 330 turning 60 years of age every hour [2,3]. As the average life expectancy

increases, research must focus on the prevention, detection, and curing of late-life

neurodegenerative diseases.

The number of individuals effected by Alzheimer's disease (AD) has been steadily rising

each year. In the United States, over 5.3 million people are diagnosed with AD, with a

new case diagnosed every 70 seconds [4]. AD constitutes the 6t leading cause of death

and also was the only cause that saw an increase in cases every year, from 2000 to 2006,

the change in cause of death due to AD jumped 47.1%. In comparison, the top four

1
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causes of death, heart disease, breast cancer, prostate cancer, and stroke on average

dropped 11.13% over the same time period. This trend is particularly alarming, as there

is currently no treatment to stop or reverse the effects of AD. It is predicted that by the

year 2050 if the current trends continue, that over 15 million Americans will be

diagnosed with AD [4-6].

1.1 ALZHEIMER'S DISEASE RESEARCH

Worldwide, there are over 26 million people diagnosed with Alzheimer's disease. This

number is expected to grow to more than 106 million individuals by 2050. As the most

common form of dementia, AD generally begins after the age of 60, with the risk of

developing the disease increasing every year thereafter. Over 50% of individuals over 85

years of age suffer from AD, and this age group constitutes the fastest growing segment

of the American population. Only 5% of all AD cases are considered to be hereditary;

however, in these cases early-onset AD is more common, and can effect individuals as

young as 30 years [5]. The affliction rate of AD increases dramatically past the age of

65. Of those between 65 and 74, 2% are affected by AD; between 75 and 84 the number

increases to almost 20%, and over 50% of those above the age of 85 are thought to have

AD [4,5]. With the prevalence of this disease increasing rapidly, AD could soon become

a leading cause of death in the US as well as worldwide in the coming decades.

Aside from the emotional and physical burden imposed by AD on both patients

and their loved ones, the disease creates a tremendous economic burden. In 2005, the

global cost of all dementia related care and treatment was estimated to be $315.4 billion.

In the United States, AD ranks as the third most expensive disease, with the cost of care

at approximately $180,000 on average from diagnosis to death The estimated annual cost
2
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for AD in the US by 2050 is projected to rise exponentially, with over 15 million

individuals diagnosed with this disease [7].

1.1.1 DIAGNOSIS AND BIOMARKERS

Such startling statistics indicate a pressing need for the early diagnosis and treatment of

AD. One of the major hindrances behind the successful treatment of Alzheimer's disease

is the lack of clinical testing to accurately diagnose the disease. If screened by expert

clinicians specialized in memory disorders and neurodegenerative diseases, individuals

can expect an 80-90% diagnostic accuracy [8]. The clinicians in these cases make their

diagnosis based on a multitude of factors; these elements include interviews with patients

and caregivers, medical history, clinical observation, and memory tests. This type of

longitudinal study occurs over the course of months to years-the combination of these

factors is what helps the neurologist make a final determination on the subject's condition

[8,9].

A significant issue with the diagnosis of AD is the ability to rule out other

contributing diseases/conditions, such as Mild Cognitive Impairment which is hard to

differentiate from AD at an early stage. While tests exist to rule out other such diseases,

many patients essentially have "waited too long" for a diagnosis. By the time family and

caregivers begin to notice the symptoms of the disease, it is generally too late to utilize

any currently available treatments effectively [10]. Many AD patients do not have access,

either financially or geographically, to expert neurologists; furthermore, general health

practitioners in community clinics cannot match the diagnostic accuracy' of expert

' Diagnostic accuracy refers to the ability to accurately diagnose a given disease properly (correct vs.
incorrect), also measuring metrics regarding true/false positives (see section 3.9 for detailed explanation).

3
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neurologists, generally falling to a diagnostic accuracy of 75% with a sensitivity of 83%,

and a specificity of 55% [8]. Currently, the only definitive diagnosis for AD can only be

determined post-mortem. In this case, specific protein markers for AD are identified

from a biopsy of brain tissue under a microscope. To biopsy a brain in a living patient is

extremely invasive and high-risk, and is rarely, if ever used. Brain tissue biopsy is

reserved for a definitive diagnosis through autopsy [6].

For this study, metabolic, anatomical, and physiological biomarkers for AD were

analyzed for their effectiveness in the early diagnosis of the disease. Each of these three

biomarkers was obtained through clinical study and evaluation of subjects with the hope

that each biomarker contained relevant and pertinent information about the patient's

condition than a written clinical evaluation based on medical history and various memory

and cognitive tests.

The metabolic marker examined for this study relates to the blood glucose levels

in the brain, obtained through positron emission tomography (PET). These levels have

been shown to contain information with regards to AD diagnosis, and can be used to aid

in an automated system for subject classification [11].

Magnetic resonance imaging (MRI) of the brain is used to study the anatomical

biomarker for AD. Specifically, this method is used to quantify the shrinkage of gray

matter in the brain, generally attributed to neuronal death caused by AD [12,13].

Finally, the use of electroencephalography (EEG) to record event-related

potentials in subjects was explored to determine the effectiveness of the

electrophysiological biomarker for AD as a means of early diagnosis [14]. The detection
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and measurement of event-related potentials (ERPs) in EEG data was used to determine

the integrity of neuronal systems in subjects relating to AD diagnosis [9,15]. Due to the

fundamental differences in their modalities, metabolic, anatomical and

electrophysiological, PET, MRI, and EEG provide complementary information.

1.1.2 ALZHEIMER'S DISEASE NEUROIMAGING INITIATIVE

A project worth noting is the 'Alzheimer's Disease Neuroimaging Initiative' (ADNI).

Principal investigator of ADNI as well as the director of the Center for Imaging of

Neurodegenerative Diseases, Dr. Michael W. Weiner, MD is a professor of Medicine,

Radiology, Psychiatry, and Neurology at the University of California. The primary goal

of ANDI is "to define the rate of progress of mild cognitive impairment and Alzheimer's

disease, to develop improved methods for clinical trials in this area, and to provide a

large database which will improve design of treatment trials" [16].

A five year research project which began October 2004, the ADNI project studies

the rate of change of cognition, brain structure (atrophy), and biomarkers in a large cohort

of patients. Two hundred elderly controls, 400 MCI, and 200 AD probable patients make

up the total cohort--with all the data from this research study becoming available

publicly. Funding for the project comes from multiple sources, totaling $60 million. The

National Institute of Aging and National Institute of Bioimaging and Bioengineering

contributed $40 million, with the remaining $20 from donations by multiple foundations

as well as the pharmaceutical industry, making this initiative one of the highest funded

studies for AD.

In addition to the raw cohort data, ADNI provides a wealth of information

regarding recording protocols and procedures for both MRI and PET imaging. Focusing
5
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specifically on MRI and PET imaging data, the ADNI study aimed to set uniform

recording procedures for both techniques as well quantification methods for analysis of

the subsequent data. The grant proposal, as well as program announcements, MRI/Pet

methods for non-ADNI studies and overall ADNI protocol summaries can be found on

the ADNI-info website [17].

The research and results obtained in the work for this thesis are similar and related

directly to the ADNI study. Much of the work done on EEG, MRI and PET data

followed many of the protocols and procedures outlined in ADNI. The work done in this

thesis parallels the research conducted in ADNI.

1.2 OBJECTIVES OF THIS STUDY

This thesis is part of an ongoing study, and subsequently builds and improves upon

previous work completed. The overall goal of this study and of the previous work was to

create a clinically available, non-invasive, and automated system to aid in the early

diagnosis of Alzheimer's disease by using a fusion of complementary data sources. For

this specific study, three biomarkers are used for the development of an automated

system for the early diagnosis of AD. Specifically, ERPs are acquired from EEG data

along with volumetric MRI and normalized blood glucose levels from PET scans from

cohorts of both control normal and AD probable patients.

For this study, only AD probable and control normal (CN) patients were

examined. Mild cognitive impairment (MCI) and Parkinson's disease (with and without

dementia) were not investigated; this study focused on the accuracy of the early diagnosis

and detection of AD vs. CN. The first series of tests performed focused solely on the
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diagnostic accuracy when only ERPs from EEG data were used. Several smaller cohorts

were generated from the main overall EEG dataset of 210 patients, comprised of 114 AD

and 96 CN subjects. The algorithm for these EEG tests was a modified approach to

Augmented Stacked Generalization, implemented with wavelet processing of the EEG

signals. Similarly, two more initial tests were run using only volumetric MRI data and

blood glucose data from PET scans. A total of 136 subjects were available in the MRI-

only cohort, with 79 AD and 57 CN used for this work. For the PET-only cohort, 80 total

subjects were available, with 37 AD and 43 CN also utilized for the work described

within this thesis.

For each biomarker, an individual ensemble of classifier systems was created to

determine classification performance. Each of these ensembles was then used for a

decision-based data fusion approach. Various combinations of complimentary data from

EEG, MRI, and PET were used to generate final evaluations and performance metrics.

Specifically, EEG+MRI, EEG+PET, MRI+PET, and EEG+MRI+PET fusion

combinations were all evaluated on specific subject cohorts. Since many subjects in the

overall cohort would not necessarily all have EEG, MRI, and PET data, each fusion

combination had a varying number of subjects. Various combinations of these subjects

generated a wide range of results with regards to overall ensemble system classification

performance on diagnostic accuracy.

1.3 ORGANIZATION OF THESIS

Chapter 2 provides a detailed literature review, covering the biomarkers used in this study

for AD as well as other neurodegenerative disease and other current diagnosis techniques

used for the classification of these diseases. The methodologies employed in this study
7
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are explained in Chapter 3. Specifically, all aspects of ERP data (acquisition,

preprocessing, and feature extraction) and MRI/PET data acquisition and preprocessing

are discussed. Biomarker specific ensemble systems for the classification of AD versus

CN are also detailed, along with the decision-based data fusion approach for the various

biomarker combination systems. Chapter 4 is presents all results from this current study,

including individual and combined biomarker expert diagnostic accuracies. Severity

analysis is detailed, showing diagnostic accuracies of individual and combined biomarker

experts. Finally, Chapter 5 provides discussion with respect to sources of error,

conclusions and suggestions for future work.
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CHAPTER II

BACKGROUND

2.1 ALZHEIMER'S DISEASE

Currently, the primary method to diagnosis Alzheimer's disease (AD) concentrates on

longitudinal studies, based on interviews of the patient and caregivers. However, since

small community clinics rarely achieve an 80% diagnostic accuracy, with even expert

neurologists seldom surpassing 90%, the use of reliable biomarkers to aid in the diagnosis

of this disease has become paramount [8]. Generally, the biomarkers used for this

purpose can be sorted into one of four categories: biochemical, anatomical, metabolic,

and physiological. For the purposes of this study, the anatomical, metabolic, and

physiological biomarkers are investigated for diagnostic accuracy analysis.

2.1.1 DIAGNOSIS OF AD

Alzheimer's disease is considered an extremely difficult disease to accurately diagnose at

the early stage [6]. Generally, when an individual is suspected to have some form of

neurodegenerative disease, the initial step is to administer a series of standardized

neurological tests, to determine baseline information about the subject's condition. The

simplest and most commonly used test is the Mini-Mental State Exam (MMSE), which

attempts to assess cognitive ability by asking the subject to answer several simple

questions and perform trivial tasks. The Clinical Dementia Rating (CDR) and Severe
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Impairment Battery (SIB) are then used as further examinations on a patient's cognitive

state and degree of dementia.

2.1.1a MINI-MENTAL STATE EXAM

The concept behind the MMSE is to test a subject's short-term memory, as well as assess

their overall cognitive state [18,19]. The questions generally focus on short-term

memory recognition, requiring the subject to determine the current time, date, and

location among other things. The subject's overall cognitive ability is evaluated through

tests such as counting backwards in steps of seven, spelling common words backwards,

copying and drawing a diagram, or writing sentences.

The test is scored from zero to thirty, with zero representing a vegetative state and

thirty indicating normal cognitive ability. It is important to take into account each

subject's educational background, as varying levels of education can impact outcome of

the test. As such, most MMSE scores are accompanied by a number relating to the

subject's highest level of education attained. As shown in Table 1, there are many ways

to interpret the raw score from the MMSE test. No single test can be relied upon for a

comprehensive and accurate diagnosis of AD; it is common to have the MMSE

performed along with several other cognitive assessments.

Table 1- MMSE Score Interpretations [20]

Method Score Interpretation
Single Cutoff < 24 Abnormal

< 21 Increased odds of dementia
Range > 25 Decreased odds of dementia

21 Abnormal for 8 grade education

24-30 No cognitive impairment
Severity 18-23 Mild cognitive impairment

0-17 Severe cognitive impairment

10
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2.1.1b CLINICAL DEMENTIA RATING

The CDR is a 5-point scale that is used to focus upon six areas of cognitive and

functional performance applicable to AD as well as other dementias: memory,

orientation, judgment and problem solving, community affairs, home and hobbies, and

personal care. The information to determine each rating is collected through a structured

interview process of the patient and a primary caregiver, generally a family member [21].

The CDR table used for this interview process gives descriptive anchors to help the

clinician make the most accurate assessment possible. Since this rating is highly

subjective, it is important to have some form of unity throughout the interview process.

Additionally, a simple algorithm to determine the CDR of a subject can be used to

calculate the appropriate value, based on the clinical evaluations [22]. The scale used for

the CDR is shown in Table 2.

Table 2 - The CDR Scale and Meanings [21]

0.5 Very Mild Dementia 2 Moderate Dementia
0 Normal

1 Mild Dementia 3 Severe Dementia

It is important to note that, in general, CDR scores are integer numbers, aside

from the 'very mild dementia' category, and do not fall between classifications. For this

purpose, the aforementioned algorithm chooses the appropriate CDR based on the input

from all aspects of the clinicians evaluation table for the subject. Various statistical

methods can be used to determine a patient's average CDR score. Algorithms average,

then round to the closest score value for most CDR score analyses. In addition, the use of

median and mode of a set of patient's respective CDR scores are commonly used to

represent the overall 'average' score of a specific group of subjects.

11
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2.1.1c SEVERE IMPAIRMENT BATTERY (SIB)

Unlike the MMSE and CDR, the Severe Impairment Battery can be used as a means of

assessing a severely demented patient, where standard neuropsychological tests can no

longer be applied. This test focuses solely on those patients who have an average MMSE

lower than 11, falling into the severe cognitive impairment range.

Subgroups of patients in this range (MMSE of 0-5 and 6-11) showed significant

differences in scores on the SIB, while subgroups from 11 and higher did not show any

truly statistical difference in scoring [23]. Since this test is primarily focused on the

assessment of severely demented patients, it was not used for the assessment of any

subjects for this work. SIB scores are available for all subjects used in the cohorts

developed for this study.

2.1.1d GLOBAL DETERIORATION SCALE

While there are many methods for the classification of the stages of neurodegenerative

diseases, the Global Deterioration Scale (GDS) has been used extensively in clinical

environments to give a stage-based representation of the progression of a disease such as

AD in any patient.

Initially developed by Reisberg, et al. (1982), this scale is used to measure the

progression of AD into seven distinct stages. While this scale can be used to diagnose

other dementias, the symptoms within the scale can vary between the different diseases.

For the purposes of this study, the stages in Table 3 are a generally accepted as the

method to categorize AD.
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Table 3 - The Global Deterioration Scale, AD specific [24,25]

a Typical Smpt ms

Stage I No cognitive decline

(normal function)
Stage 2 Very mild cognitive decline

(may be normal age related
changes or earliest signs of AD)

Stage 3 Mild cognitive decline

(early stage AD can be
diagnosed in some, but not all,
individuals with these
symptoms)

Stage 4 Moderate cognitive decline

(mild or early stage AD)

Stage 5 Moderately severe cognitive
decline

(moderate/mid-stage AD)
Stage 6 Severe cognitive decline

(moderately severe/mid-stage
AD)

Stage 7 Very severe cognitive decline

(severe or late-stage AD)

- No memory or cognitive problems

- Memory lapses
- Forgetting familiar names and locations of objects
- Lapses are not typically obvious to others

- Mild forgetfulness
- Difficulty learning new things
- Difficulty concentrating or limited attention span
- Problem with orientation, such as getting lost
- Communication difficulties, such as finding right

word
- Loss or misplacing of valuable objects
- Difficulty handling problems at work
- Issues are noticeable to family, friend, or co-

workers
- Some memory loss of one's personal history
- Difficulty with complex tasks (e.g. managing

finances, travel, shopping)
- Decreased knowledge of current events
- Impaired ability to perform challenging mental

arithmetic (example: counting backwards from 75
by 7)

- Major gaps in memory (e.g. phone number or
names of close family members)

- Help needed for day to day tasks

- Continued memory loss (e.g. occasionally
forgetting the name of a spouse or primary
caregiver)

- Loss of awareness of recent events and experiences
in their lives

- Assistance is needed with activated of daily living
(e.g. getting dressed or bathing)

- Difficulties counting
- Personality and emotional changed such as

confusion, anxiety, suspiciousness, anger,
sadness/depression, hostility, apprehension,
delusions and agitation

- Obsessions such as petition of simple activities
- Disruption of normal sleep/waking cycle
- Increasing episodes of incontinence
- Vocabulary becomes limited and verbal abilities

eventually disappear
- Loss of ability to walk independently and sit

without support
- Help is needed with eating and using the toilet

(incontinence issues)
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As Table 3 details, the GDS breaks down the progression of AD into seven,

distinct stages. In many cases, stages one and two tend to go unnoticed by most, even by

the patient, and any respective memory/cognitive declines are generally associated with

old age. As with any of the aforementioned cognitive testing, no one metric appears

better than another

Section 2.1.2 details the pathology of the disease, tracking the effect on the brain

and other cognitive abilities throughout the progression of AD from diagnosis to death.

2.1.2 ALZHEIMER'S DISEASE PATHOLOGY

The human brain is regarded as one of the most complex and intriguing organs in the

body. While composed essentially of the same structure as most other mammals, the

human brain sets itself apart with an expanded cerebral cortex, most notably in the frontal

lobes. Much of what makes us human comes from the expansion of these regions; self-

control, planning, reasoning, and abstract thought all originate from these areas [26]. The

physiological changed caused by AD target the complex network of the brain,

specifically damaging and eventually destroying neurons. This damage caused by AD

amounts to the complex communication network in the brain shutting down and

misfiring, leading to the decline cognitive ability overtime. In particular, protein

misfolding causes plaques and tangles, that have been shown as a root cause to the

destruction of neurons, and are hallmark indicators of AD [27].

2.1.2a BETA-AMYLOID PROTEIN

Protein misfolding has been shown to be a key culprit in the progression and

development of AD. While the cause for this phenomenon has not been discovered to

date, protein misfolding has been linked to the primary cause of neuronal death, and
14
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consequently the deterioration of cognitive ability. Two proteins have been linked to the

development of AD; one of these proteins, beta-amyloid, originates from segmented

fragments from a larger protein called amyloid precursor protein (APP). In a healthy

brain, proteins such as the P3-amyloid are normally metabolized and removed. While APP

has been shown to be important in the growth and development of neurons, the P3-amyloid

fragment from APP begins to develop "plaques" in the brain, eventually leading to

neuronal death [28].

APP Beta-Amyloid
Molecule a)

Figure 1 From lPP to Beta-Amyloid [29]

Enzymes break apart the APP molecule, creating f3-amyloid fragments which later combine
to form fl-amyloid plaques that cling to the outer membrane of neurons.

As shown in Figure 1, a normal APP molecule is fragmented by enzymes, with

these segments becoming (3-amyloid proteins. These (3-amyloid protein fragments then

begin to "clump" with other molecules, forming insoluble amyloid plaques which begin

to stick to the membranes of neurons. These plaques have a tendency to develop within

the hippocampus, which is considered to play the largest role in short term memory [28].

Additionally, plaque build-up has been shown to occur in parts of the cerebral

cortex, generally associated with decision making and higher-level cognitive abilities,

such as reasoning and thinking. It is important to note that it is currently unknown

whether these (3-amyloid plaques cause AD, or if they are a byproduct of another

15
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neurophysiological process in the development of the disease [27,28,30]. A rare,

inherited form of AD. known as early-onset AD has heen shown to develop due to

alterations in the structure of APP. Large concentrations and accumulations of the

insoluble P-amyloid plaques on the membranes of neurons can block the synaptic

pathways, which eventually leads to neuronal cell death [28,31].

2.1 .2b HYPERPHOSPHORYLATED TAU PROTEIN

The second protein linked to AD is actually part of the internal structure of a neuron. The

hyperphosphorylated-T protein is essential for the structural support and cohesion of a

microtubule assembly in the neuron; additionally, these microtubules are crucial in

guiding nutrients and other molecules towards far away axons [32]. The tau molecules

stabilize these microtubules, and are routinely replaced over time as the tubules assemble.

Figure 2 illustrates a healthy neuron along with a microtubule and the stabilizing T

molecules within it.

Stabilizing

Tau Molecules -

Healthy Neuron

~A- . -$

Ct c

Microtubules

Figure 2 -,4 heahlrh neuron and the stabilizing tau molecules fr microtubules [29]

In AD, the hyperphosphorylated-T protein does not follow the conventional

renewal cycle. Instead, these molecules begin to break off from the microtubules and

16
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start to pair off with other threads of the t proteins. Eventually, enough of these

molecules clump together, forming neurofibrillary tangles [31,32]. The loss of the T

protein causes the microtubules to disintegrate, losing structural integrity as they fall

apart. With the breakdown of the microtubules. vital nutrients and molecules are

prevented from being transported. The inability to transport material within the neurons

ultimately results in cell destruction [27,28.30]. [igure 3 illustrates a diseased neuron,

and the breakdown of a microtubule caused by the clumping ofT proteins.

Mkcrotubule Subunit
Fall Apart

Disintegrating
e Mlcrotubule

Diseased Neuron Tangled Clumps
* of Tau Proteins

Disintegrating
Microlubules

Figure 3 -The tau protein in the disintegration ofneuronal mnicrotubule [29]

An unknown mechanism causes hyperphosphorylated-r to breakdown imp)roperly, leading to
the disintegration of microtubules in the neuron. These tau proteins then begin to clump,
forming neurofhrDlary tangles.

2.1.2c ATROPHY OF THE BRAIN

Neuronal death occurs due to the amyloid plaques and neurofibrillary tangles, caused by

the buildup of the (-amyloid and hyperphosphorylated- proteins, respectively. As the

microtubules break apart. material can no longer be transported within neurons.

ultimately leading to the destruction of the cell. With (3-amyloid fragments. the resulting

plaques begin to stick to the neuron's outer membranes, eventually causing damage and
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disintegration of the cell itself [28]. The death of these cells eventually leads to brain

atrophy, where significant portions of the gray matter dissolve. There are four primary

stages to AD: preclinical, mild, moderate, and severe. Each stage effects the overall

atrophy of the brain in a progressive manner. While the course of AD may vary from

patient to patient, the overall track of symptoms develop over these same general stages

[33,34].

In the preclinical stages of AD, the disease begins to effect the areas of the

hippocampus most related to the creation of memories. As these areas begin to atrophy,

subjects will start to experience short-term memory problems. The onset of AD at this

stage can go unnoticed for up to twenty years before the first signs of memory loss are

noticed [4,5]. Some patients with preclinical AD actually have a condition called amnesic

mild cognitive impairment (MCI). The differentiating factor between MCI and AD

patients is that MCI patients generally have more memory problems than others at their

age, but do not exhibit the severity of memory and cognitive problems that plague AD

patients. It has been hypothesized that MCI is a transitional phase between the normal

brain and AD; however, while more MCI patients go on to develop AD than people

without MCI, only about 30% of those individuals with MCI actually develop AD.

Upon the initial diagnosis of AD, life expectancy for most patients ranges

between 8 to 10 years. Of course, this number varies among patients depending on the

current stage of the disease, along with other risk factors, such as family history and age

for example [35]. In most cases, preclinical AD has very little brain atrophy, as

illustrated in Figure 4. The blue shading in Figure 4b denotes the region of the brain

affected by preclinical AD.
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Figure 4 - Preclinical AD: Frontal and side illustrations of/the brain [29]

The blue shading and arrows in Figure lb indicate the region of the brain beginning to be
effected by the preclinical stage f'AD. Little to no brain atrophy is generally visible at this
point, as illustrated in Figure 4a.

As the disease progresses into the mild AD stage, overall brain atrophy increases.

This in turn results in noticeable memory loss as the damage to the cerebral cortex

increases, also negatively affecting the patient's cognitive abilities. It is at this point that

symptoms such as mood/personality changes, loss of initiative, poor judgment. and

increased anxiety begin to manifest themselves. For most patients, this is when AD is

first diagnosed. as both the patients and their caregivers start to accept that the memory

and cognitive declines are more than what would be considered normal through aging.

Mod.,.t
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Figure 5 - Mild/Moderate AD: Frontal and side illustrations of the brain [29]
In this stage of AD, the regions o/ the efjkcted brain matter grows-indicated in Figure 5b
by blue/dark shading and arrows. The hippocampus/cortical regions begin to show
shrinkage, as brain matter starts to die-moderate enlarging of the ventricles occurs at this
stage.
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As the overall atrophy of the brain increases in the moderate stage of AD. regions

of the brain that control language, reasoning, and perception-specifically the cerebral

cortex and frontal/parietal regions-are effected. Figure 5 shows the effect on the brain

in the mild to moderate stages of A[. At this point, patients begin to lose their ability to

organize thoughts properly and start to lose the ability to recognize friends and family.

Memory and other cognitive abilities deteriorate. Some patients may still have an

awareness of their condition at this point. Generally, at this stage patients begin to

require assistance with many daily tasks, increasing the burden on caregivers [341. In the

severe stage of AD, the (3amyloid plaques and hyperphosphorylated-t tangles have lead

to a significant overall atrophy of the brain. Figure 6 shows an illustration of the brain in

this stage. indicating a significant loss of brain matter. It is at this point that many

patients lose the ability completely to recognize loved ones and to communicate

coherently-if at all. From a physical standpoint, significant weight loss occurs, as some

of the most basic of motor skills are lost. Complete assistance is required at this point, as

patients with severe AD cannot swallow or control their bowel movements [33].

Cerebral C*ok. S- y
c-fte. cfcte.
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Figure 6 -Severe AD: Frontal and side illustrat ions of the brain [29]

61y the severe stage of AD, a large portion of hrain matter has atrophied, leading to extreme
shrinkage of both the Cerehral Cortex and the Ihppocamp us. The ventricles are a/so shon
to he enlarged great', a direct result of the brain autter loss. In Figure 6a, the blue/dark
shading and arromws once again represents the main regions affected by this atrophy.
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2.1.3 TREATMENT FOR ALZHEIMER 'S DISEASE

Before treatment can begin, an accurate diagnosis of AD is of the utmost importance.

Other causes of dementia must be ruled out, especially conditions that can be treated, and

even reversed. If diagnosed early enough, the progress of AD may be slowed through the

use of medications and other care, greatly improving the overall quality of life for the

patient [10,35]. The use of medications to slow the progression of AD is a heavily

researched area of interest for major pharmaceutical companies. In the United States, all

drugs must pass rigorous clinical trials before acquiring FDA approval for prescription

use. According to the National Institute of Health, there are currently four prescription

medications available to slow the effects and progression of AD.

Table 4 - Medications to Treat Alzheimer's Disease2 [36]

Drug Name Usage How it Works
Namenda "'  - Moderate to severe AD - Regulates glutamate

(memantine) activation

Razadyne
(galantamine)

Exelon"
(rivastigmine)

Aricept"
(donepezil)

- Mild to moderate AD

- Mild to moderate AD

- Mild to moderate
- Moderate to severe AD

Prevents breakdown
of acetylcholine
Stimulates production
of acetylcholine

Prevents breakdown
of acetylcholine and
butyrylcholine

Prevents breakdown
of acetylcholine

Common Side Effects
- Dizziness
- Headache
- Constipation
- Confusion
- Nausea
- Vomiting
- Diarrhea
- Weight loss
- Loss of appetite
- Nausea
- Vomiting
- Diarrhea
- Loss of appetite
- Muscle weakness
- Nausea
- Vomiting
- Diarrhea

The primary goal of these medications is to reduce the symptoms of AD, by

serving as a means to slow memory loss, control behavior problems, or even improve

New medications are being tested all the time. and clinical trial volunteers are necessary for eventual FDA
approval. More information regarding these medications and current clinical trials can be found at the
NIA's wvebsite, cited in source 136].

21



www.manaraa.com

sleep. These medications are prescribed after consultation with expert physicians in the

field of neurodegenerative diseases [10,36].

Other methods for the treatment of AD have also been proposed. One such

method is antioxidant treatment. The idea is that the generation of "free radicals" leads to

the damaging and death of normal cells-a suggested cause of aging [37]. Free radicals

from a chemical standpoint are essentially chemicals whose molecular or ionic structure

includes an unpaired (or free) electron. Biologically, most free radicals contain oxygen.

These "free radicals" are suspected causes for tissue damage caused by a range of

conditions such as radiation and aging. Many physicians and scientists debate whether

the use of antioxidants (such as Vitamin E) has any positive effect on AD patients

[10,37].

Referring back to Table 4, it is clear that every drug (with the exception of

Namenda") attempts to prevent the breakdown of acetylcholine. This chemical has been

identified as a neurotransmitter that is produced by neurons in the brain; specifically,

acetylcholine is believed to be involved in cognitive abilities, such as learning, memory,

and mood [38]. The enzyme acetyl-cholinesterase rapidly breaks down acetylcholine-

the three medications described previously each act as a cholinesterase inhibitor, which

has been postulated to help improve both cognitive and neuropsychiatric symptoms

[10,38]. Another method to treat AD focuses instead on another chemical in the brain

that acts on NMDA receptors. NMDA are glutamate receptors, which are the primary

molecular mechanism that controls synaptic response and memory function [39]. The

medication Namenda ® works to regulate this chemical, glutamate. Research has shown

that overstimulation of NMDA receptors may be detrimental to neuronal health [10,36].
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2.2 BIOMARKERS FOR AD

In the current study, metabolic, anatomical, and physiological biomarkers for AD were

all analyzed for their effectiveness in the early diagnosis of the disease. Each of these

three biomarkers was obtained through clinical study and evaluation of subjects with the

hope that each biomarker contained relevant and pertinent information about a given

patient's condition rather than a standard medical evaluation.

The datasets used in this study were created through various biomarker cohorts,

collected at the University of Pennsylvania. The collection methods for each biomarker

are explained in sections 2.2.1 through 2.2.3, as well as relevant pre and post processing

techniques. Literature reviews regarding previous works done on these biomarkers are

also explored. Section 3.3 covers the CERND study in greater detail.

2.2.1 ELECTROENCEPHALOGRAPHY

The use of electroencephalography (EEG) to record event-related potentials in subjects

has been rigorously explored in previous studies to determine its effectiveness as a

physiological biomarker for early diagnosis of AD.

Electrodes were placed at specific intervals along the scalp to measure brain

activity. Minute voltage changes were recorded from a large number of neurons firing in

proximity to these electrodes. A summation of these voltages collected at each electrode

constituted the EEG signal. The international 10/20 system was the electrode placement

method used for this study, and is shown in Figure 7.
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Figure 7 - The International 10/20 System for EEG Electrode Placement [40]

Based on the relationship between the location of an electrode and the underlying

area of the cerebral cortex, this system is the most widely used and accepted method for

the placement of electrodes in an EEG setup. A conductive gel or paste was applied

between the electrode and the scalp to minimize the impedance caused by dead skin and

hair. Each site has a corresponding letter and number to describe the lobe and

hemisphere location, respectively. Even numbered electrodes referred to the right

hemisphere, where odd numbers represented the left hemisphere. In some EEG system

setups, the reference point is located near the eyes-in others it consists of two electrodes

attached to the subject's ear lobes (electrodes Al and A2, as seen in Figure 7). Slight

modifications to this system are not uncommon, such as the replacement of the 01 and

02 electrodes with the OZ electrode, located on the mid-line in the occipital region [41].

The lettering of the system indicates the region of the brain where the electrode is

located. Specifically, this lettering system is defined by an "F" for the frontal lobe, "T"

for the temporal lobe, "C" for the central lobe, "P" for the parietal lobe, and "0" for the

occipital lobe. While physically there is no central lobe in the cerebral cortex, these
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electrodes are given this designation to indicate their location on the midline between the

ears with the "FP" electrodes standing for 'front polar.' Nasion indicates the point

between the forehead and nose, while inion is the "bump" at the bottom-rear of the skull.

This method allows quick and easy configuration of electrode placement across all

subjects of varying skull sizes. The name of the system stems from a reference to the

10% and 20% inter-electrode distances [41-45].

EEG signals provide measurement of the electrical activity of the brain in

millisecond time-resolution. Because of the ease of collection, and relatively inexpensive

setup, EEG has become the biomarker of choice to analyze brain activity in many

disorders and disease, such as epilepsy, dyslexia, and sleep disorders [44,45].

Considerations on the accuracy of EEG measurement must be made. While these

signals have superb time resolution, the spatial resolution suffers due to the inherently

poor localization properties of EEG. Since signals are generally measured from the

scalp, the electrodes will pickup post-synaptic events from every neuron firing during

some neurological episode. While these electrodes can detect these events in real time, it

is impossible to determine the locale of the actual event since the EEG acquired at any

given electrode is a summation of signals from neighboring areas of the brain.

Consequently, the specific synaptic origin of an EEG signal cannot be determined

through the use of these scalp electrodes.

In an effort to increase spatial resolution in EEG, subdural electrode techniques

have been employed in various studies. While subdural electrodes have helped improved

the localization of the EEG signal, this procedure is highly invasive and can result in

infection or even brain hemorrhaging [46,47]. A particular field of interest is the study of
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source localization of EEG. Essentially, this focus attempts to determine the localization

source in the brain of various EEG signals. There are many methods, such as low

resolution brain electromagnetic tomography (LOERTA), however, source localization

reaches beyond the scope of this thesis. Interested readers may reference the LORETA

homepage for more information on this field [48]. Another consideration to be made for

EEG signal acquisition is its inherent susceptibility to artifacts and noise. Artifacts can

be introduced into the signal through poor electrode contact to the scalp impeded by hair

and dead skin cells, improper application of the gel/paste, and sweating. A main source

of artifacts in EEC is caused by other electrical activity like impulses generated during

muscle movement (EMG) such as eye blinking, cardiac rhythm, or even simple muscle

movement on or near the scalp. An example of this typical artifact is shown in Figure 8.

Figure 8 Example of an eye blink art ifact in an EEG Signal
The artifact can he clearly seen in the F3 and Fi channels, starting at the blue line (-is).
Since the F3 Fl electrodes are veri' close to the eye, it exhiit the greatest distortion as
the data is viewed firomn electrodes flther awvay from the eve, the distortion lessens in
magnitude (such is the case at (, ('4, and PZ in this example, acquired fromt our EEG
setup).
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The electrical potential created in a muscle movement is much greater than that of

an EEG, and easily skews the entire signal readout. Fortunately, such artifacts have been

greatly researched and most artifact-rejection techniques can handle these errors [45]. In

even the most controlled acquisition environments, artifacts are still introduced to the

EEG signal. Other than the typical EMG artifacts, other sources of error such as

electrical noise can be presented. The 60 Hz noise3 introduced to EEG from AC power is

commonly removed through the use of a notch or low pass filter, as most information in

an EEG resides at lower frequencies [45]. It is imperative that such sources of noise, be

it physiological or external, are removed prior to analysis by either a trained EEG

technician or an automated artifact rejection process.

2.2.1a SPECTRAL CONTENT

Early research on the EEG was first described by Richard Caton in 1875 through his

experiments on rabbits and monkeys. This early work involved the placement of

electrodes on the exposed brains of the animals while visual stimuli were presented to

track changed in the EEG-Canton showed that flashes of light created a change in the

electrical activity, and his was the earliest known experiment in ERPs [6,26].

By 1902, Han Berger started work on EEG waves in canines and in 1920 he

began studies on human subjects. In 1929, Berger published his work, which included

experiments performed on numerous subjects, including him and his son, in a paper titled

"On the Electroencephalogram of Man" in which he identified two basic brain wave

patterns [26].

3 For this study, this refers to the United States-worldwide AC power specifications can be either 60 Hz or
50 Hz depending on locale. In such instances these high-frequency components are filtered on a location
basis. A complete list of per country power standards is available in source [49].
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One pattern was described by Berger was a "large, regular wave, that occurred 10

to 11 times per second" and the second as a "smaller, irregular one, at a frequency of 20

to 30 cycles per second" [50]. He named these two waves "alpha" and "beta," relating to

the larger/slower and smaller/faster kinds respectively. Soon after, researchers identified

more types of brain waves, and named them using the same Greek letter convention as

Berger, calling them gamma, delta, theta, kappa, lambda, and mu. The characteristics of

these EEG waves (frequency, amplitude, patterns) in the same individual are generally

rather consistent [50,51].

Excited I

Relaxed

Drowsy I

I
5e I

1 sec

Figure 9 - EEG signal variation between different stages

Excitement is characterized by a rapid frequency, low amplitude signal. Varying levels of
sleep states alternatively are distinguished by an increased irregularity and the
manifestation of "slow waves" [50].
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EEG has been used in many applications for the diagnosis of different sleeping

disorders and dementia. Figure 9 illustrates the differences in EEG signals based on

various states of awareness. There are seven primary EEG wave types, each generally

associated with certain brain activities. These wave types occur below the 50/60Hz range

so high frequency noise is easily filtered and avoided through pre/post processing

techniques without disturbing these waves.

Delta Waves (0.5-3.5 Hz): The delta wave is a low frequency signal, with high

amplitudes ranging from 20 to 200 pV. In most cases, this wave only appears during deep

sleep in normal individuals-when observed in an alert person, delta waves could suggest

an irregularity in the brain caused by cerebral damage or a tumor. The delta wave is

shown at the bottom most trace labeled "Deep Sleep" in Figure 9. Dominant in infants,

this wave is thought to be the result of unconscious processes within the mind [50,52].

Theta Waves (4-7 Hz): The theta wave is rarely found in adults and is more common in

children. Similar to delta waves, the amplitudes of theta waves are higher than most,

ranging from 20 to 100 pV. In adults, it has been shown to occur during states of fantasy,

both displeasure and pleasure, and drowsiness. The appearance of this rhythm in normal

waking adults can be a sign of high stress or disease [50].

Alpha Waves (8-13 Hz): These rhythmic oscillations usually have amplitudes between

20 and 6 0pV. Most people can generate alpha waves in a resting position, with eyes

closed in a meditative state. As soon as the individual begins any type of mental or

physical activity, these waves generally decrease in amplitude or disappear. This wave is

illustrated in Figure 9 by the "relaxed" state. The established view on alpha waves

associates them with relaxation; however there have been published studies by Shaw and
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Mulholland that illustrate several exceptions to alpha wave association with relaxation

[53,54]. In up to one third of individuals tasked with performing mental arithmetic there

was either no change in amplitude or an enhancement of alpha waves was observed.

More evidence shows alpha wave augmentation before performing skilled actions

involving aiming, such as archery, shooting, and in putting golf. This wave originates in

the occipital and frontal cortex regions, and is the most common type of EEG activity in a

healthy awake adult brain [50,51,53-55].

Kappa Waves (~10 Hz): While technically within the alpha band range, Kappa waves at

about 10 Hz have been observed during thinking. Kennedy, et al. (1948) reported that

this phenomena occurred in about 30% of their subjects [50,56].

Mu Waves (8-13 Hz): Even though the mu rhythm resides entirely within the alpha wave

definition, it has been shown that these waves are independent phenomena due to

differences between the two in source generation. Appearing in the normal EEG of about

7-8% of the population, this rhythm has been attributed to movement or the intent to

move. The mu wave is not effected by eye blinks-rather, this wave is more connected

to the motor cortex, relating specifically to the movement of the extremities [50].

Beta Waves (14-30 Hz): An irregular wave that has an amplitude generally between 2

and 20tV, the beta wave are most common when a person in engaging in mental or

physical activity. This is illustrated in Figure 9 by the excited state, shown in the top

most trace. Generally seen symmetrically in the brain, it primarily originates from the

frontal regions of the cortex [50].
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Gamma Waves (-40 Hz): First reported in humans by Galambos, et al. (1981), the

gamma wave is described as a rhythmic EEG activity occurring in response to sensory

stimuli--either auditory or visual. This rhythm represents the highest frequency in

human brain activity. Usually correlated to simultaneous processing and communication

between different regions of the brain, the gamma wave has a resting frequency of 40 Hz,

and ranges between 36 and 44 Hz in most cases. Strong and well-regulated gamma

activity has been attributed to good memory; conversely, a weak gamma rhythm is

indicative of learning disabilities [50,57]. This band may be of interest in future studies

for AD-based diagnosis through EEG; however, it has not been extensively researched at

this point.

2.2.1b ACQUISITION PROTOCOLS

In most cases, EEG recording is done while using specific protocols to generate stimuli in

an attempt to evoke certain responses. These stimuli can be visual, auditory,

somatosensory, or olfactory. Generally, a visual stimulus consists of patterns, colors, or

words presented at random intervals to the subject. A somatosensory stimulus commonly

is presented in the form of a targeted electrical pulse to some part of the patient [58,59].

An olfactory stimulus is an odor presented to the patient to generate some response for

the EEG recording. In most cases, the auditory stimulus is a series of tones that vary in

frequency, but also can contain everyday sounds for the same purpose. Interestingly, a

study by Finney, et al. (2003) demonstrated that when presented with visual stimuli, a

response was observed in the auditory cortex in deaf subjects [60]. Irrespective of their

originating source, the responses generated in an EEG from these stimuli are called event

related potentials (ERP) [61]. Many protocols can be created to generate these
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responses; in some cases multiple stimuli can be combined with cognitive tasks to

produce ERPs.

2.2.1c ERP AND THE ODDBALL PARADIGM

One such protocol that is widely used in ERP generation is called the auditory oddball

paradigm. In the traditional setup, two tones are presented to the subject-a standard

tone, generally at 1 kHz, is played in short segments for the majority of the EEG

recording. Scattered sporadically throughout the procedure, an oddball tone is presented,

usually at 2 kHz. The two stimuli in this situation are presented randomly throughout the

recording session, with a random amount of inter-stimulus time. In order to amplify the

possible ERP from the oddball tone, the subject is usually instructed to push a button or

count the total number of oddball tones [62,63].

A modification to the auditory oddball paradigm was presented by Yamaguchi, et

al. (2000) which has been implemented in this study [64]. In addition to the standard and

oddball (target) tones from the original protocol, the proposed protocol by Yamaguchi's

group added a third stimulus type, consisting of novel sounds. These sounds were never

repeated throughout the EEG recording and had slight variations in length. Each sound

was a common everyday noise, such as a door slamming or a dog barking. As with the

original protocol, patients were instructed to press a button upon hearing the 2 kHz target

tone. The overall breakdown of stimuli presentation throughout this modified oddball

paradigm was as follows: 65% standard, 20% target, and 15% novel. The inter-stimulus

interval varied randomly between 1 to 1.3 seconds. In this setup, the subjects were not

warned of novel sounds; nor were they instructed to respond in any manner to them. By

evoking a response in an entirely different manner with novel tones, the ERPs generated
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from both novel and target stimuli would represent activity from different regions of the

brain, possibly providing discriminatory information between different types of

neurodegenerative dementias [64].

Once this process is complete, the subject recordings are segments with respect to

stimulus type and are averaged together to obtain the overall ERPs. Cohen and Polich

(1997) say the minimum number of trials (epochs) necessary to have a statistically

significant average of the ERP is twenty [65]. However, in this study and many others

like it, a much larger number of ERPs are averaged to aid in the reduction of noise in

individual epochs. Since the overall amplitude of EEG is small to begin with, and the

amplitude of ERPs in the EEG can be minute as well, it is very possible that

characterizing information could be lost in noise introduced in the recording. Once

averaged over many trials, the features of an ERP become more distinguished as the

noise is minimized.
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Figure 10 - Typical ERPs, labeled with features of interest
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While ERPs vary from patient to patient, the general form of an ERP can be

described by the illustrations in Figure 10. In the illustration on the left, an idealized case

is shown, labeled with the four main components that generally make up the ERP. The

letter refers to a peak (positive) or trough (negative), with the number indicating the

milliseconds post-stimulus. While peaks and latency can vary, the order does not change.

This is a general case as the right illustration in Figure 10 depicts, these peaks and

troughs do not always perfectly line up over their respective post-stimulus times [63].

2.2.1d THE P300 AS A BIOMARKER

The feature of most interest in the ERP, and subsequently the most studied, is the P300.

The presence and amplitude of this peak in ERP data has been related to cognitive ability,

and generally occurs 250-500ms after the stimulus is presented to the patient [66,67].

Two and three stimuli oddball paradigms tend to generate the P300; however, this peak

has been shown to differ between stimuli. In novel stimuli, the P300 tends to arrive

sooner (lower latency, P300a) than when elicited by a target stimuli (P300b) [59,67].

It is important to note that a visual interpretation of the P300 has not been

considered an effective diagnostic tool. This becomes apparent across various patients.

In diagnosing AD, one would expect a general pattern of late P300 latency and

diminished amplitude across AD patients. For normal control patients, one would expect

a stronger and higher amplitude P300 response. In some publications and research, the

P300 is referred to as P3. Similarly, other peaks and troughs are identified in this format,

such as N100 referenced as Ni or P200 as P2. Other publications even flip the vertical

axis, running from negative to positive, top to bottom. Figure 11 illustrates an example
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comparison of AD probable and normal control

oddball paradigm.

ERP from a normal patient (Patient # 17)
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Figure 11 - ERP (Comparisons: The P300 in CN and AD s.utjects

Plots (a) and (b) in Figure i show expected patterns in AD and CN ERPs, with

the CN patient having a fairly typical ERP and the AD patient with a poor P300 response.

possibly indicating poor cognitive ability. However, as plots (c) and (d) indicate, this is

not always the case. While a strong P300 may indicate good cognitive processes, it is not

uncommon to find strong P300 amplitude in AD patients and a weak P300 in normal
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patients. These visual anomalies demonstrate the problem with the use of P300 as a

diagnostic method.

The P300 itself has been studied at length since it was first observed in 1965.

Over the past 45 years, the P300's relation to cognitive ability, its origin within the brain,

and its many research applications has been comprehensively studied. Originally, the

P300 was thought to stem from deep within the brain, in the hippocampal region;

however, Polich and Kok in 1995 determined a possibility for multiple sources for the

P300 within the brain. They postulated that the P300 most likely originated in the

temporo-parietal junction [67]. Interestingly, this region of the brain has been found to

play a role in self-other distinction processes, theory of mind,4 as well as attributed to out

of body experiences 5 [69,70].

In 1997, Polich and Margala described a single stimulus protocol to compare

directly with a two stimulus procedure. They determined that while a P300 generated

through a two stimuli, auditory oddball paradigm had slightly stronger amplitude and

more defined P300, the differences between the two were statistically insignificant. The

report did show that irrespective to the stimuli, the source of the P300 appeared to remain

the same [62].

A 1999 study determined that both auditory and visual stimuli presented with an

"active task condition" created a much stronger P300 than when no task was assigned.

The active task condition refers to a test in which a subject was instructed to press a

4 Theory of mind relates to the ability to attribute specific mental states (belief, intent, desire, imagination,
knowledge) to oneself and others. This is also concerned with the ability to understand that others mental
states are different from one's own [68].

5 These out of body experiences (OBE), described in [69] have been shown to occur in part due to damage
to the temporoparietal junction. OBEs can be induced by electrically stimulating this region of the brain.
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button on target stimuli. Furthermore, the auditory protocol generated a strong response

in both tasking situations as opposed to the visual stimuli [71]. Strilber and Polich (2002)

compared the oddball paradigm to the single stimulus protocol once again, this time with

a focus on how the P300 would be affected by altering the inter-stimulus interval (ISI).

They showed that the oddball paradigm produced a stronger P300 overall than the single

stimulus protocol with an ISI of only 2.5 seconds. When the ISI was increased to 30

seconds, both protocol produced similar P300s. The only discerning difference between

the two protocols in this case was that the P300 in the oddball paradigm was of a longer

duration [72].

The P300 is now considered to form from multiple sources simultaneously within

the brain. Polich (2007) detailed two subcomponents of the P300, the earlier P3a and the

later P3b, which he postulated are created depending on the difficulty of the task at hand,

and the attention required by the subject to standard, target, and novel stimuli. The P3a

appeared to originate primarily from the frontal regions of the brain during periods where

active tasking and attention was required, while the P3b seems to originate from the

temporal and parietal regions more associated with memory processing. Because of this,

it is believed that the P3a and P3b carry different information regarding cognition from

each other. The P3a is generally only found in 10-15% of cognitively active, normal

young adults [73].

2.2.1e WAVELET ANALYSIS OF THE P300

As discussed in section 2.2.1a, the EEG contains many different frequency bands, some

overlapping, that represent various fundamental processes occurring in the brain.

Analysis of this information requires the ability to access specific frequency bands within
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this signal. On the other hand, since ERPs are one-second signals that consist of averages

taken from EEG fragments, the latency of the individual components of the ERP are just

as crucial for analysis as isolating their respective frequency bands. This is related to the

non-stationary nature of EEG signals, for which the wavelet transform is considered to be

one of the most appropriate analysis methods.

Bazar, et al. (2001) compared three different protocols: the oddball paradigm, the

single stimulus (varying ISI), and the single stimulus (constant ISI) with every fourth

stimulus removed [74]. The ERPs from each case were decomposed using the wavelet

transform, and the resulting signals were compared across various frequency bands.

Their key observation was that the P300 component was visible across all electrode

locations when using the oddball paradigm with delta peaks around 2 Hz [74].

Previously, in another paper published by Demiralp et al. (1999), it was shown that

viewing ERPs only in the time domain left the analysis susceptible to the diverse

disposition of the P300 as well as other components in the signal. They hypothesized this

susceptibility to be caused by concurrent brain processes that initially created the signal.

By using the wavelet transform to decompose the signal into its respective time and

frequency components, they were able to record and accurately measure components

from events in the brain. Since frequency components in different bands of EEG (delta,

theta, and alpha for example) indicate different facets of cognition, the process of wavelet

decomposition provided the capacity to witness new mechanisms involved in the

simultaneous processing of cognitive ability that could not be seen in the time domain

alone [75].
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Bazar et al. (2001) then compared the wavelet transform for ERP data to other

signal processing techniques, such as the Fourier transform. Their primary goal was to

separate the standard EEG frequency bands from the original data (namely the alpha,

theta, delta and gamma bands). In using the wavelet decomposition technique, they

found that more characterizing information could be extracted from the delta and alpha

band that was not possible through standard Fourier spectral analysis. The main

advantages of the wavelet transform over other pre-existing signal processing techniques

included the ability to resolve in both frequency and time, significant data compression

ability, as well as no need for a fixed time window to analyze the signal (as required in

Fourier-based techniques) [74]. Demiralp et al. (2001) used a five-octave wavelet

transform to analyze both single-trial and averaged ERP. The main emphasis of their

study was to determine whether this transform can be used to compare the components of

ERP from subjects of different age and cognitive ability. They confirmed that the delta

band contained the most pertinent and distinguishing feature in an ERP after wavelet

decomposition [75].

2.2.1f ERPS IN ALZHEIMER'S DISEASE RESEARCH

Using electroencephalography to capture event related potentials has become relatively

affordable and feasible for use in even the smallest of community clinics; subsequently,

the viability of ERPs for AD diagnosis has been researched heavily over the past decade.

Much of the research in this area has focused on merging and expanding upon key

information from previous works [41,44]. While there is a plethora of information

regarding the use of ERPs in medical diagnosis, the following section summarizes the

work most relevant to the current study.



www.manaraa.com

The most conventional method to analyze ERPs in a patient is through visual

inspection. In such an analysis, a technician determines the amplitudes of latencies of

standard ERP components such as the P300, either in a single trial, or through an

averaged set of trials [14]. The latency of the P300 peak has been shown to gradually

increase proportionally to the age of a cognitively normal individual. This latency also

increases in patients with AD as compared to the P300 of cognitively normal subjects of

the same age range. It is important to note that while true for AD, this latency is also

apparent in other neurodegenerative diseases and dementias, and therefore is not a

reliable marker for AD [64,76]. A similar parallel can be drawn between cognitively

normal subjects and AD patients of the same age group with respect to the amplitude of

the P300. It was initially reported that patients with AD had decreased P300 amplitude in

comparison to normal subjects. These data were later contested by several other studies

[62]. While parallels and trends can be drawn when analyzing entire cohorts of data, it is

not generally statistically relevant to apply the same convention to an individual patient,

due to the high variation of ERPs between subjects.

A recent paper concerned specifically with the development of a better method to

distinguish various dementias through the use of EEGs was published by Hidasi et al.

(2009). They performed a coherence analysis on a cohort consisting of 14 AD probable

patients along with 10 control subjects. Relative frequency band changes were analyzed

between the two groups, and coherence analysis was performed between these bands.

Their findings reported a much higher theta band power in AD patients as compared to

controls; furthermore, they noted that the alpha-2 band, described in the paper to cover

9.5-11 Hz, had an increase in the AD group as compared to the normal group. Even more

40



www.manaraa.com

telling, they reported that the alpha-1 band (8-9 Hz) had a visible increase in control

subjects when compared to the AD patients [77].

Alzheimer's disease and its links to genetic susceptibility have also been

extensively researched. It has been shown that while a small number of cases of have

come from known genetic causes, the majority of AD cases do not. A study by Boutros

et al. (1995) studied ERPs in patients at risk for AD. The study cohort consisted of 19

healthy subjects and 33 subjects known to have a family history of AD. The auditory

oddball paradigm was used for ERP generation. An overall increase in amplitude in the

P50, P300, and N100 responses from subjects with familial AD as compared to the

normal subjects demonstrated a correlation between the P300 and early cognitive decline

in patients with first-degree familial history of AD [78].

A similar study was conducted by Ally et al. (2006) with the biological children

of patients with AD to examine the feasibility of the P300 as a preclinical maker for the

disease. Once again, the oddball paradigm was used, the study consisted of the AD

group, their children, as well as age and gender matched control groups for each. Their

results confirmed the findings of others: the amplitudes of the P300 were significantly

lower in the AD group as compared to the control group. However, the more fascinating

result from their study shows that both the amplitude and latency of the P300 in the

children of the AD group were lower in comparison to the control group of subjects.

This study showed that the use of the P300 as a diagnostic measure could be extended for

preclinical use in a high-risk patient group [79].
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2.2.1g DIAGNOSIS WITH EEG

Certain traits within the ERP can be used as a biomarker for AD; either through wavelet

processing or visual inspection, distinguishing characteristics can be identified in the ERP

to aid in the classification of AD and normal subjects. Many different classification

methods and algorithms have been created in an attempt to construct an accurate system

for automated diagnosis of AD.

An early method for automated classification using artificial neural networks was

proposed by Polikar et al (1997). A 28 patient cohort, of 14 AD and 14 normal controls,

was analyzed and ERPs generated through the oddball paradigm were extracted from the

corresponding EEG data. For this study, the ISI was 1.5 seconds with each tone 200 ms

in length. Eighty six percent of the presented stimuli were standard I kHz signals with

14% constituting the 2 kHz target tones. The initial classification was done on the raw

time domain signals, yielding 64% accuracy at the best trial. When wavelet coefficients

were used in place of the raw signals, accuracy improved within a range of 79% to 93%.

While the results from this study proved promising, such a small cohort created an

unfavorably large confidence interval; therefore, a larger patient cohort was necessary to

properly validate these results [80].

In a study aimed at validating the plausibility of using a recurrent neural network

(RRN) to diagnose AD, Petrosian et al. (2001) used EEG collected from patients with

AD and an age-matched control group. Instead of using an oddball paradigm to elicit

ERPs, they collected EEG recordings for two minutes at a resting state from the parietal

and occipital chancels from 10 early AD and 10 control subjects. Preprocessing was

done with the wavelet transform, using the Daubechies 4 wavelet (db4). They trained the
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RNN using 3 AD and 3 control subjects and utilized the remaining 14 for testing. All

control subjects were diagnosed accurately, with only 2 misdiagnoses for the AD test

subjects, leading to 80% sensitivity and 100% specificity. Again, while this study

appeared promising, the same algorithm needed to be applied to a larger patient cohort

for statistical significance [81].

In 2002, Yagneswaran et al. studied signal power frequency and wavelet

characteristics in EEG for AD analysis. Their cohort consisted of 9 AD probable and 10

control subjects; nine-channel EEG data was recorded, with signal power frequency and

wavelet coefficients used to make the diagnosis. Overall, the information from the power

spectra proved inconsequential, so a band pass FIR filter utilizing the Hamming windows

was used to separate the delta, theta, alpha, and beta bands. These filtered bands were

used alongside relative power and slow wave ratio to train and test an artificial neural

network. They also trained and tested another neural network using data from the same

EEG recordings, this time utilizing the Daubechies 5 (db5) wavelet coefficients as a

means of comparison. Interestingly, the classification accuracy of the network trained on

the power spectrum features reached 94.7%, with the network trained on the db5 wavelet

coefficients only reaching 89.4% [82]. This study gave interesting insight to the use of a

raw signal filtered into bands as opposed to wavelet decomposition for diagnosis of AD.

Again, the small cohort, only 19 subjects, indicates it would be advisable to repeat this

experiment on a much larger pool of subjects.

A different method of analysis, called approximate entropy (ApEn) was examined

in a 2003 study by Abasolo et al. ApEn is a "regularity statistic" that attempts to

represent the randomness of fluctuations in time series data, such as EEG. ApEn is
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essentially a representation of the complexity of the given data [61]. They collected EEG

data from the P3 electrode only, on a cohort of 7 AD and 7 control subjects. The signals

were then divided at 5 second intervals at which time the ApEn analysis was performed.

They showed through ANOVA testing that the higher ApEn complexity scores in the AD

subjects in comparison to the controls were statistically significant [83].

Tao and Tian (2005) tested the diagnostic accuracy for AD versus MCI diagnosis.

In their cohort, 12 AD and 18 MCI patients had their EEG signals recorded from 21

electrodes. The protocol included five minutes of resting state EEG recorded with the

subject's eyes open, followed by five minutes with the eyes closed. They then generated

21 random numbers, and displayed them to the subject in 30 seconds; each subject was

asked to make a note of the number of odd digits shown as the cognitive task to elicit

ERPs. The subsequent EEG signals were then decomposed using the Mexican hat

wavelet, primarily to extract the gamma band from the data. Coherence analysis 6 was

then performed on pairs of electrode channels. For the eyes closed resting state, AD

patients showed a much lower coherence in comparison to the MCI and control groups.

However, in the cognitive task both the AD and MCI groups shared a decline in

coherence when compared to the normal control subjects [84].

Clearly, one of the main challenges in working with EEG data is feature

extraction. Chapman et al. (2007) used principal component analysis (PCA) to extract

eight features from a cohort of 12 AD and 12 normal subjects. They implemented the

'number-letter' paradigm, which elicits ERPs through visual stimulation. A discriminant

function based classification technique was then tested on the data. When trained and

6 Coherence analysis allows for the detection and measurement of linear dependencies in multichannel
time-series data. Essentially, this analysis finds variations in signals with similar spectral properties .
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tested with a 50-50 validation technique, the performance reached 92% with a sensitivity

and specificity of 100% and 83%, respectively. When trained and tested with a leave one

out cross validation method, the classification performance reached 79%, with

corresponding sensitivity and specificity at 83% and 75% [85]. While the 50-50

validation had a higher classification accuracy, it is not truly representative of the

technique-the leave one out configuration provides a more accurate depiction of the

system's diagnostic capability.

Henderson, et al. (2006) collected EEG data from 30 AD probable, 6 vascular

dementia, 3 mixed dementia, and 42 cognitively normal subjects. For their classification

method, they implemented a fractal-dimension based approach as well as an approach

based on a probability density function with zero-crossing intervals that used the raw

EEG as data. Achieving a sensitivity of 67%, with a specificity of 99.9%, the fractal

based approach did fairly well in identifying the control subjects. The probability density

approach obtained 78% sensitivity, improving upon the fractal based approach. Both

methods need to be researched more thoroughly for multi-class situations [86].

2.2.2 MAGNETIC RESONANCE IMAGING (MRI)

The use of magnetic resonance imaging (MRI) as an anatomical marker for AD has

gained in popularity with the declining costs of these machines. The ADNI study also

helped in the proliferation of this technique, as new standards and modalities were

created to use MRI as a diagnostic tool for AD classifications [16].

MRI is as a medical imaging technique, most commonly used to visualize the

internal structure of the body. Powerful magnetic fields are used to align the nuclear

magnetization of hydrogen atoms within the body, and radio frequency fields are then
45



www.manaraa.com

used to systematically change the alignment of this magnetization, which causes the

hydrogen nuclei to produce a rotating magnetic field. This field is subsequently detected

by the scanner, and with enough manipulation through additional magnetic fields, a

visual representation of the scan be can constructed [87]. In methods similar to those

used for CT, three-dimensional models can be constructed from multiple MRI scans.

As discussed previously, the stages of AD can also be characterized by the

atrophy of the brain. This change in overall brain volume can be detected by various

volumetric MRI imaging techniques. MRI enhances the differences in tissue matter

based on the ratio of bound to unbound water molecules, which gives it a far greater

contrast than that of computed tomography (CT)7 . This binding of water molecules is

what makes the MRI useful in imaging the brain; specifically, brain matter has more

bound water molecules in comparison to the surrounding cerebral spinal fluid (CSF) and

bone structures. For example, the T2 weighted MRI technique boosts contrast in the

image, showing water and fluid containing tissues as bright regions of the brain. This

method accentuates the CSF and allows for greater contrast in viewing the brain tissue

and surrounding fluid [89].

2.2.2a MRI MODALITIES

Targeted neuroimaging software can be used to isolate regions of interest (ROI) in an

MRI of the brain. These regions can then be quantized through volumetric image

processing, isolating the low contrast brain matter from the bright CSF in the MRI.

Using this information, slices of the brain can be compiled to determine overall inter-

cranial volume (ICV), or specific regions using various segmentation methods. However,

7 CT scans utilize tomography (digital geometry processing) to generate a three-dimensional image of an
object's internals from a series of two-dimensional X-ray images taken from a single axis of rotation [88].
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while a single-visit MRI as a diagnostic tool is convenient to a point, longitudinal studies

generally give a better representation of overall brain atrophy [90].

There are two primary types of MRI that can be obtained, referred to as T1 and

T2 imaging. Referred to as the "longitudinal" relaxation time, the T1 type indicates the

time required for a substance to become magnetized after being subjected to a strong

magnetic field. This also can refer to the time required to regain a longitudinal

magnetization after the RF pulse. Essentially, TI relaxation is concerned with the water

molecule's magnetization vector returning to its initial state after rotation caused by the

RF pulse. This relaxation time reflects the relationship between the frequency of these

movements as well as the resonance frequency. When these two components are

comparable, TI is short, which means magnetization recovery occurs quickly;

conversely, when different, the T1 is long, corresponding to a long magnetization

recovery time. Biologically, the water molecule in tissue is small, and therefore moves

too quick for T1 relaxation, whereas large proteins in body tissue move slow. Generally,

tissues and fluids in the brain that have a large ratio of bound to unbound water molecules

have short T1 times (fast magnetization recovery), whereas tissues with a large ratio of

unbound to bound water molecules have longer T1 times, corresponding to a long

magnetization recovery time [91].

T2 is known as the "transverse" relaxation time, which is a measure of how long

transverse magnetization would persist in a perfectly uniform magnetic field. It can also

be considered a measure of how long the resonating protons remain in phase, given an

orthogonal radio frequency (RF) pulse. Generally speaking, T2 relaxation refers to the

rotation of water molecule's magnetization vector away from the transverse axis
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followxing the RF pulse in MRI imaging. The decay in 1T2 imaging is caused by magnetic

relations that occur between spinning protons. Unlike TI. T2 interactions do not involve

any transfer of energy; rather. a change in phase occurs. which leads to a loss of

coherence. Therefore. we would expect an opposite reaction to that of T1 relaxation;

specifically. in T2 relaxation tissues and fluids in the brain that have a large ratio of

unbound to bound water molecules have short T2 times. whereas tissues with bound to

unbound ratios have long T2 times [91].

T2 relaxation becomes less efficient and T2 time increases as the natural

frequency of the protons heightens. Rapid irregular movements average out in T2 so

internal fields become insignificant. This occurs in liquids and creates a more uniform

internal magnetic surrounding. In the brain, the hydration-layer has a shorter TI than

'bulk-phase' water (e.g. cerebral spinal fluid or CSF). The motions of these protons are

not too slow to create efficient T2 relaxation. Therefore. the T2 time stays long. TI and

T2 imaging modalities for MRI have advantages and disadvantages, each visually

representing tissue and fluid differently in the brain [87.91].
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Figure 12 illustrates the two modalities on a sample brain image of a patient.

These two methods result in significantly different contrasts, depending on the type of

tissue present [89]. In TI weighting, the image shows excellent tissue contrast, with CSF

appearing much darker. T2 weighting shows less spatial resolution for tissue matter,

whereas CSF appears bright and high in contrast.

2.2.2b DIAGNOSIS WITH MRI

The use of MRI as a practical method for the diagnosis of AD has also been extensively

researched. A 2006 study by Fritzsche et al. utilized a 68 subject cohort consisting of 27

normal controls, 16 MCI, and 25 AD subjects. They performed an automated volumetric

analysis of the cerebral spinal fluid distribution, and MRI images were then spatially

oriented and normalized. They implemented an image segmentation algorithm to classify

regions consisting of CSF, gray matter and white matter. They then used the distribution

of the various tissue type counts determined from this algorithm as well as overall brain

atrophy to create six features. These features were used in Fisher Linear Discriminant

(FLD) analysis as well as a neural network for classification. Overall, they achieved

classification accuracies of 80% for AD and 85% for controls. When testing between

MCI and controls, they achieved a specificity and sensitivity of 80% and 81%,

respectively; however when comparing MCI and AD patients, their overall classification

accuracy dropped to 59%. While they showed that automated classification of AD and

normal subjects is possible through image segmentation of MRI data, the distinction

between MCI and AD through the same process was poor [12].

MRI imaging is not just limited to two-dimensional slices, converted into

volumetric regions of interest. Torabi et al. (2006) used MRI images from a cohort of 50
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control and 25 AD subjects. These images were separated into simple 60/40 training and

testing datasets. The scans from each patient were preprocessed and fitted to the same

.overall brain image map, where texture feature processing was then computed. These

features are created by considering 16 "landmark" pixels and then analyzing neighboring

pixels and the similarity to the landmarks. Overall, this process generated 336 features,

which were then reduced in size through principal component analysis (PCA). The

resulting reduced dimensionality data was used to train and test a radial basis function

neural network. Overall, they were able to distinguish between AD and control subjects

with approximately 95% accuracy [93].

Longitudinal tracking of the course and progression of AD is commonplace in

many studies, and MRI can provide meaningful diagnostic information for researchers in

this respect. A study performed by Fox et al. in 2001 utilized a cohort of 20 control, 20

AD, and 4 patients that did not exhibit any symptoms but came from families with

genetic risk factors for the development of early-onset AD. Subjects in the trial had MRI

scans taken over the course of five to eight years, with the first used as a baseline for

brain mass. They compared subsequent scans to the baseline with a non-linear fluid

matching algorithm. Their results showed progressive atrophy in the parietal and medial

temporal lobes of individuals at risk for early-onset AD. For patients with AD, they

essentially verified all clinical assumptions about brain loss; all regions generally

associated with AD showed significant atrophy over time. These results showed that

using series of MRI along with other classic clinical trials through longitudinal studies

can be used as an early detection method for AD-provided a baseline MRI is taken early

enough in the progression of AD [94].
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Alone, MRI has proven to be a viable diagnostic tool for AD; however, other

readily available or easily attainable patient data could be used to complement the

diagnosis from MRI. In 2006, a study by van der Hiele, et al. aimed to find whether

cognitive function in normal and AD patients is represented better in MRI, EEG or a

combination of both. A cohort of 33 total subjects was used, 10 AD, 11 MCI, and 12

controls. EEG data were collected from each patient while memory tasks were

administered to generate ERPs and help evaluate cognitive ability. The MRI data

collected from each patient was processed to quantize the frequency of gray/white matter

and CSF within the brain. They performed several linear regression analyses between

both sets of data. They determined that complementary information could be found

between EEG and MRI data, with EEG measuring brain function and MRI determining

overall brain atrophy. While each is associated with a different measure of cognitive

decline in the progression of AD, the information in both sets supplemented the other to

aid in a better distinction between the diagnostic classes in the groups [95].

2.2.3 POSITRON EMISSION TOMOGRAPHY (PET)

First described in the late 1950s by David E. Kuhl and Roy Edwards, this method of

tomography measures the metabolic activity of cells in the body, producing a visual

representation of the body's biochemistry. Their work led to further refinements in the

imaging technique by Ter-Pogossian et al. (1975) paper submitted to Radiology [96].

Unlike MRI which displays tissue and fluid response to a strong magnetic field and radio

frequency, PET shows the underlying chemical processes within the body.
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To perform a PET scan, the patient is first injected with a radiopharmaceutical 8 or

"radioactive tracer". After injection, the scan is delayed anywhere from a few seconds to

a few minutes to allow the radio-isotope to be transported throughout the area under test.

As the radio-isotope decays, it emits a positron which travels a small distance before

annihilation with an electron. The annihilation of a positron by an electron emits two

high-energy photons (approximately 511 keV) that propagate in almost opposite

directions [99,100]. The photons emitted are gamma rays which can be detected by the

scanning device that surrounds the patient. A computer then analyzes the collection of

gamma rays to create a map of the area under test. The amount of radiopharmaceutical

collected in the tissue reflects how brightly the tissue will appear on the computer

generated image, indicating the level of tissue function. Unfortunately, the cost of PET

systems is extremely prohibitive to be installed anywhere other than high-tech clinics or

university hospitals and research centers. Also, the preparation of the various doses of

radiopharmaceuticals is complex, and many of these begin to decay almost immediately,

necessitating immediate scanning after injection. For purposes of this study, the imagery

produced provides a representation of glucose activity in the brain, considered a

metabolic biomarker for AD [100,101].

2.2.3a NORMALIZATION TECHNIQUES

In MRI, normalization is generally not as prudent as in PET imaging. Through the

various types of MRI (T1, T2), contrast levels vary enough to provide distinguishable

characteristics and pertinent information. However, in PET the use of normalization

8 In higher doses, these "tracers" are used for cancer treatment. The radiation absorbed by the body in the
small doses for PET is extremely low, and considered safe. The most common emitter used is Flourine-18
('8F), with F18-FDG (Flurodeoxyglucose) used in brain scans for cognitive impairment studies [97,98].
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becomes important to isolate regions of specific interest. A common technique for PET

is to normalize with respect to the pons, as this provides a baseline for metabolic activity

normalization on a per patient basis. Biologically, the pons is located on the brain stem,

anterior to the cerebrum, as illustrated in Figure 13. In PET scans of the brain, the

glucose levels of specific regions are determined; these representations of metabolic

activity are indicators for AD and other neurodegenerative diseases [101]. When

performing pons normalization, the glucose readings from the pons in the patient are used

as a baseline for the rest of the brain. In this sense, a patient's glucose metabolic rates in

the brain map relative to the pons, and allows for uniform visual look between patients.

Inf io r padunct

4iedtd oblo ga

Figure 13 - Location of the pons for PET normalization [ 102]

Another method commonly used in PET image normalization involves the

statistical process called z-score or standard score. The concept of z-scoring is simple: if

given the mean and standard deviation of a population, it is possible to derive a

relationship between a given score and the population [103]. This scoring method
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indicates how many standard deviations an observation is above or below the mean. In a

mathematical sense, the formula for z-scoring is as follows, with x representing the raw

score, p as the population mean, and a as the standard deviation of the population:

X-
z = (2.1)

However, this method assumes knowledge of the entire population mean and

standard deviation. In most cases, only a sample of the population data is available,

making this method analogous to the t-test/t-statistic. For the use of PET normalization,

it is common practice to use z-scoring to create statistical maps of hypometabolism,

relative to elderly normal control subjects. Specifically, this requires the use of either one

or an average of many control subjects as the mean and standard deviation parameters for

this normalization technique.

The PET data specific to this thesis was processed through a program called

Neurostat 9, which is a software library for neurological image processing and analysis.

Developed by Satoshi Minoshima, the program performs baseline alignment, error

detection/correction, as well as both normalization parameters described previously. This

also allowed researchers to select specific ROI to normalize individual for greater

accuracy in specific region metabolic activity visualization [103].

Figure 14, shows an example of a PET scan with the various stages of processing

from subject with AD. The first row is a reference map, indicating the various regions of

the brain of specific interest. The second row shows the elderly control glucose

metabolism, averaged across 27 control subject PET scans. In the third row, the subject's

9 Neurostat is freely available online through registration at the developer's website. 3D-SSP (used for
display of processed images) is also available online for further analysis and research purposes [104].
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individual glucose metabolism map is displayed. normalized to pons. The linal row

shows the result of z-scoring against the elderly control map. clearly accentuating the

parietal lobe where h\pometaholism is evident.

2.2.3b DIAGNOSIS WITH PET

Various manual (visual inspection) and automated (computcr-aided classification)

methods utilizing P1I data for Al) diagnosis have been developed and tested. In an early

1994 study performed by Salmon ei al. differential diagnosis of AD vith PLT v\as

attempted. Based on previous \ork that demonstrated hypometabolism in Al) probable

and possible patients. the study evaluated the diagnostic power ot cerebral metabolic

patterns for neurodegenerativ e diseases. PEI scans ere obtained from 129 subjects

overall. 65 with probable AD. and the remainder of the cohort representing several other

dementias. These subjects were refrred for differential diagnosis. as a final decision had

\ °run . << , iW11A (110l-score 11ormalialion 103) 1
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not yet been determined. Using visual analysis of PET images from each patient, as well

as prior clinical evaluations, the group determined that the use of PET as a diagnostic tool

for AD is relevant. Of the 65 patients with a final clinical diagnosis of AD, they

determined that 97% exhibited abnormal metabolic scans, with 94% showing a pattern of

hypometabolism [11].

Kazunari et al. (2001) described a method for statistical brain mapping of 18F-

FDG PET in AD. Specifically, they investigated the use of statistical parametric

mapping (SPM) 10 as well as the aforementioned Neurostat software. The PET cohort

included 10 AD and 10 age-matched controls, where each subject underwent '8F-FDG

PET imaging. The resulting images were standardized using a stereotactic brain

template, using either SPM or Neurostat. The data was normalized to the overall global

metabolic activity. They performed within-group comparison of image sets by both the

SPM and Neurostat methods, with between group comparisons of the AD and control

using SPM statistical routines. They also created simulated PET image sets, generated

from segmented MRI sets of 5 controls and 5 AD. Their results showed that while both

SPM and Neurostat are viable methods for statistical routines in PET image processing,

the SPM technique had 20% more gray matter mismatches-which resulted in an

improper representation of metabolic activity. Furthermore, they concluded that the

extent, severity, and location of metabolic changes in the brain from AD were

inconsistent, regardless of the statistical mapping method employed. Specifically,

deformation accuracies become an issue in heavily atrophied brains [105].

to SPM is a statistical technique for analyzing differences in brain activity captured through various
imaging techniques (such as PET). This process focuses on voxel analysis, with each voxel of an image
generally representing the activity of a specific region.
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In a recent study by Foster, et al (2007), 18F-FDG PET was used to improve the

accuracy of diagnosis between AD and frontotemporal dementia (FTD), which can be

confused in clinical diagnoses. The experimental cohort consisted of 45 patients, 31 of

whom were pathologically confirmed with AD and 14 with FTD. Six dementia experts

with experience in 18F-FDG PET analysis made independent and forced choice diagnoses

for each subject based on five separate methods: review of clinical information only, a

diagnostic checklist, both the clinical information and checklist, transaxial ' 8F-FDG PET

scans, and '8F-FDG PET stereotactic surface project (SSP) metabolic and statistical maps

(an example of which previously shown in Figure 14). Their results proved promising

for the use of 18F-FDG PET in distinguishing AD and FTD. Through the visual

interpretation of the 3D-SSP images alone, they were able to achieve an overall

diagnostic accuracy of 89.6%, with specificity and sensitivity at 97.6% and 86%,

respectively. The researchers noted that the use of the '8F-FDG PET images was more

helpful when the experts were not certain in the initial diagnosis. This study alone

showed that visual interpretation of ' 8F-FDG PET after simple training for doctors and

clinicians is actually more reliable overall when distinguishing FTD and AD than clinical

methods alone. Traditionally, these two diseases are often confused through clinical

diagnosis, and '8F-FDG PET gives additional information that increased diagnostic

confidence, even with dementia experts [106].
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CHAPTER III

METHODS

Much of the work presented within this thesis is an extension of many years of previous

work and research accomplished by earlier studies. Section 3.1 details all previous work

completed relevant to the current study, as well as how the earlier work contributed to

this thesis. Sections 3.2 through 3.9 cover all background and methods specific to the

most current study.

3.1 PREVIOUS WORK SPECIFIC TO THIS STUDY

The efforts of the earlier studies focused on only ERP EEG data collected from a

previous cohort (Cohort A) 71 AD and cognitively normal subjects. This data was used

to evaluate the feasibility of ERP based analysis for automated diagnosis of AD. The

primary approach taken in the early stages essentially involved decomposition of the

signal using the discrete wavelet transform of individual ERPs for each patient, which

were then used to train and test a neural network classifier.

The first stage of the efforts prior to this thesis started with a cohort of 32

subjects. EEG signals obtained at the PZ electrode were processed through a wavelet

feature extraction technique, using both the Daubechies 4 (db4) and quadratic B-spline

wavelets to obtain the related signal coefficients. These coefficients were used to train an

ensemble of classifiers system using the multi-layer perceptron as the base classifier to
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distinguish between AD and normal control subjects. With this setup, a performance

averaging around of 80% accuracy was obtained [107].

The next phase of the project expanded the size of the cohort to its final size of 71

subjects, 34 AD and 37 control normal. Once again, the ensemble approach was

evaluated on the cohort, this time utilizing ERP data collected from the PZ, CZ, and FZ

electrodes. These signals were subsequently decomposed through wavelet processing

using the Daubechies 4 wavelet to obtain their respective coefficients. A single trial run

of the algorithm utilizing the MLP as the base classifier yielded an accuracy of

approximately 83.1%. A five trial average of the algorithm exhibited an accuracy of

79.2% [108].

The 71 patient cohort data contained ERPs from 19 overall electrodes; however

only three had been used by the prior studies. The following study aimed to investigate

additional electrode locations, with particular emphasis on the parietal region. Once

again, the Daubechies 4 wavelet was used to decompose the ERPs into specific frequency

bands. The three lowest bands were used as features for this analysis, generally

considered to contain the most pertinent information for ERPs [64,108]. The ensemble

based approach was expanded to allow further combination of classifiers; in this case,

multiple classifiers were trained on different feature sets. These feature sets consisted of

a specific set of wavelet coefficients relating to a given frequency band acquired from

various electrodes. Furthermore, these feature sets were separated by the stimulus type

that generated the ERP. The sum, product, weighted majority voting, and decision

templates were utilized for decision level fusion to combine the various feature set

classifiers. Classification accuracy reached 83.1% for the entire cohort [109].
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In a later stage of the studies prior to this thesis, the investigation shifted using a

different type of ensemble system. This investigation used the stacked generalization

algorithm for AD/CN classification. Classification accuracy in distinguishing normal

from AD reached 85.65% over averaged trials. Severity analysis was computed for this

cohort, with the overall AD group being split into mild and moderate subjects based on

their clinical diagnoses. Creating a three class problem (mild AD vs. moderate AD vs.

normal) produced a classification accuracy of 71.34% [110].

In 2005, a new study started to investigate various biomarkers of AD, with a new

cohort (Cohort B). In the initial stages of this second study 16-channel EEG data were

recorded from 62 subjects, also based on the oddball paradigm for ERP generation. An

ensemble of classifiers based classification algorithm was used. Once again, all channels

from the raw EEG signals were processed through wavelet decomposition with the

Daubechies 4 wavelet, and the three lowest frequency bands were used for analysis.

Each band was analyzed individually in an attempt to obtain the most complimentary

feature sets to use for classification to boost overall accuracy. The best mixture of

classifiers were then combined using decision level fusion, once again utilizing the sum

rule, product rule, and weighted majority voting with the addition of the Dempster Safer

rule. The system was tested on both the old (Cohort A) and new (Cohort B) patient

cohorts, yielding accuracies ranging from the mid 80% range to the low 90% with the

optimal combinations [111].

The most recent phase of the study expanded the new cohort to 98, with 49

normal and 40 AD subjects overall. This data was used to reassess the work previously

done on ERP-based diagnostic accuracy between AD and normal subjects. The cohort
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was then expanded further with the addition of 39 Parkinson's disease and 39 MCI,

bringing the total overall cohort to 161 subjects. Additional biomarker data was made

available for each subject, including (but not limited to) EEG, volumetric MRI T2, and

biochemical marker data. Similar to previous processes with multiple classifiers as

experts, this method utilized the different biomarkers available as experts in an ensemble

based classification algorithm. The decision level fusion in this setup was performed

through simple majority voting, weighted majority voting, and the sum rule in a cross-

validation setup. The classification performance of MRI and ERP combined was

compared with that of cerebral spinal fluid (CSF)" analysis, the single most accurate

diagnostic test currently available for the diagnosis of AD in a living patient. ERP alone

classified with an accuracy of 80.61%, with MRI alone classifying 85.54% in AD vs.

control only. When combined, the ERP+MRI fusion system achieved a diagnostic

accuracy of 93.99%, exceeding the CSF biochemical analysis performance of 92.77%

[112].

3.2 CURRENT RESEARCH

Present work now includes the compete cohort from the CERND research initiative (see

section 3.3). In the two studies prior to this, a portion of the final subject set was used as

data was acquired. With the recruitment process over, data from a total of 447 individual

patients was collected, with EEG, MRI, PET, as well as various clinical evaluations and

dementia scores. Specific to this study, EEG, MRI and PET data for AD and normal

patients are analyzed for the first time, based on a modification to the stacked

" CSF analysis consists of a spinal tap and chemical evaluation of specific proteins (in the case of AD
diagnosis both 3-amyloid and hyperphosphorylated-T are evident). Elevated levels of these proteins in the
spinal fluid have proven to be reliable in AD diagnosis [112,113].
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generalization algorithm. Each biomarker constitutes an overall ensemble system expert.

with the experts comprised of augmented stacked generalization subsystems. The

classification performances of EEG. MRI. as well as PET were all compared

individually, and in all possible fusion combinations. Basic severity analysis was also

performed, splitting the AD group into both mild and moderate groups, and computing

performance metrics with the control group. For the purposes of this study. the cutoffs

for the mild and moderate AD severity analysis groups were based solely on the

respective MMSE scores of the subjects. Those AD patients with scores lower than 23

were categorized as the moderate AD group and the remaining subjects as mild Al).

Figure 15 shows the basic flow diagram of information from data collection to final

decision, based on the ERP. MRI. and PET classification experts.
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3.3 CERND STUDY COHORT

The primary data used in this study (hereafter referred to as 'Cohort B') were collected at

the University of Pennsylvania and Drexel University in the Center of Excellence for

Research in Neurodegenerative Disease (CERND) study [114]. The cohort included 447

patients; the average age of the entire cohort was 72.02 (standard deviation 8.62) years.

This cohort included patients diagnosed with AD, MCI, Parkinson's disease (PD) and

Parkinson's disease with dementia (PDD), as well as 63 total normal controls. Each

patient underwent a battery of neurological and physiological tests to obtain a diagnosis,

as well as create a large set of data for future analysis. Some patients had as many as

three visits, so multiple sets of data have been generated from one patient, increasing the

overall usable cohort size. The CERND study generated vast amounts of data for each

patient that can be used for automated diagnoses of each neurological disease. EEG,

MRI, and PET are three of the datasets that are used in this thesis study. Proprietary

image segmentation software was used to perform volumetric analysis of MRI data for

each patient at the University of Pennsylvania prior to our use at Rowan University. The

PET data presented was in the form of raw numerical quantization of various ROI in the

brain. Both pons and z-score normalization was done at Rowan on the dataset provided.

EEG signals were also provided in their raw form. Baseline correction, artifact rejection,

filtering and signal averaging were all performed at Rowan.

Each patient had an accompanying MMSE, CDR, DSRS, and GDS scoring

results. Each of these tests was designed to evaluate the overall cognitive and mental

state of the patients in order to provide more information to aid in the final diagnosis.

The MMSE was the simplest of the tests used to diagnose dementia and is scored from 0
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to 30. Depending on the level of education for the individual, a score below 19-20

indicates cognitive impairment. The CDR was scored incrementally as 0, 0.5, 1, 2, or 3,

with zero indicating normal cognition, and three indicating severe dementia. The DSRS

was administered with multiple-choice questions that incorporate both cognition and

daily living tasks. Higher scores indicate higher levels of dementia. The GDS was a

stage-based scale used for dementia. Higher scores in the GDS indicate higher levels of

dementia and overall poor cognitive ability. Furthermore, a numerical value is assigned

to each patient regarding their level of education, which had an impact on their expected

abilities on several dementia tests. This number indicated years of formal education

attained.

3.3.1 INCLUSION CRITERIA

There were several key factors that determined the overall inclusion criteria for the

CERND study. Listed below in Table 5 are the inclusion and exclusion criteria for

normal controls as well as AD/MCI patients relevant to this specific study.

Table 5 - Inclusion/Exclusion Criteria for CN, AD, and MCI Patlients [ 114,115]
Cognitively Normal AD/MCI

* Age>55 * Age>55
* CDR = 0 CDR > 0.5
* MMSE>26 * MMSE_<26
* No indication of functional or * Presence of functional and cognitive decline of the

cognitive decline for two years previous 12 months
prior to enrollment * Satisfaction of National Institute of Neurological and

Communicative Disorders and Stroke Alzheimer's
Disease and Related Disorders Association Criteria
for probable AD

* Evidence of any central nervous system neurological disease (e.g. stroke, multiple sclerosis,
PD, etc) by history or exam

* Use of sedative, anxiolytic or anti-depressant medications 48 hours prior to evaluation, testing
or data collection
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Table 6 lists relevant statistical information for all patients in Cohort B. along

with their respective diagnostic class. The respective subject count per in each category,

average ages and MMSE scores are provided, along with relevant standard deviations.

The second half of the table documents the average DSRS scores along with the standard

deviation for each class. CDR scores were computed. with the overall average and

standard deviation displayed. as well as the group median. Since the CDR score scales

only as 0,0.5, 1.2 or 3 the median was displayed for the best representation of the group.

A similar process was done for the level of education attained for each group, with the

mean, standard deviation and median provided. [ducation level is indicated in the table

by the total years of education attained.
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3.3.2 COHORTS SPECIFIC TO THIS STUDY

Many datasets were generated for this study. each of which contained different

information and patients. Furthermore. many patients had multiple visits, so any one

patient could have three unique EEC trials, increasing the total number of effective

subjects. Henceforth, all usable trials (multiple visits from each patient or not) will be

referred to as subjecs. with palienis referring to individual patients.

10.22GN-2 FZ (nov) 10.220N-2 PZ (nov) l0.220N-2 CZ (nov)

1 510
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Multiple datasets for EEG were generated. but only three were primarily used for

standalone EEG analysis. Each of these sets was generated based on visual inspection of

subject ERPs generated from the FZ, PZ and CZ electrodes for both novel and target
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stimuli. Standard stimuli were not utilized for any part of this research project, as the

most notable ERP generation in the oddball task comes from target and novel stimuli.

Figure 16 is an example from this analysis for the second visit of patient 10.22, which

was determined to be satisfactory for both novel and target ERP generation. This

analysis was subjective, and was determined by looking for signals with low overall noise

and distortion, and strong peaks and troughs. In Figure 16, a strong N100 and P300 can

be seen, indicative of a desirable P300 response.

3.3.2a EEG COHORTS

Satisfactory EEG Dataset: The following sub-cohort was generated from the overall EEG

dataset of 491 available subjects (all classes, CN/AD/MCI/PD/PDD) to create a 107

subject cohort of AD and normal controls. The subjects were selected based on visual

ERP analysis where all ERPs appeared clean and satisfactory overall. Both target and

novel responses for the subject had to pass this test, otherwise all data for that subject was

excluded from this subset. Table 7 details the breakdown of the sub-cohort information,

specifically the total number of males/females, average age as well as the respective

average MMSE scores.

AD
CN

Totals

Table 7 - Saisfactory EEG Dataset Statistics

21 33 54 76.44
13 40 53 70.28
34 73 107

20.60
28.94

Satisfactory + Marginal EEG Dataset: This dataset incorporated all the previous subjects

in the 'satisfactory only' set and added those subjects with ERPs considered "marginal."

These marginal subjects were determined again through visual inspection-if only one
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stimuli (target or novel) was deemed marginal and other satisfactory, it still fell into this

sub-cohort. This cohort was generated to encompass a larger swath of the available

subjects to determine if these marginal ERPs in addition to the satisfactory ones would

cause a drop in diagnostic accuracy.

Table 8 -,atisfactory + Marginal EEG Dataset Statistics

AD 39 46 85 76.02 19.20

CN 24 55 79 72.16 29.05

Totals 63 101 164

First Visit Satisfactory + Marginal EEG Dataset: This dataset is similar to the previous.

however only first visit subjects were included. Essentially,. this signifies that only data

from satisfactory and marginal subjects that was generated from the first visit diagnosis

was used. While this reduces the size of the cohort, it was created to determine what

effect, if any, a dataset including only first visit patients would have on the ensemble

system performance. Table 9 gives the statistical breakdown for this sub-cohort.

Table 9 - First isi Satisfactory Mlarginal EEG Dataset Statistics

AD 22 35 57 76.39 20.49

CN 13 31 44 70.19 28.79

Totals 35 66 101

3.3.2b MRI COHORT

The cohort used for MRI analysis is a subset of the overall 447 patient cohort for this

study. All AD/CN patients with respective MRI data was used to generate this dataset.

Similar to the EEG procedures, each unique trial is considered a subject, with each

patient possibly having multiple trials. This cohort was used for MRI-only ensemble

analysis. Table 10 details the relevant statistics for this dataset.
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Table 10 MRI Dataset Statistics

AD 30 49 79 75.02 18.79

CN 15 75 57 71.01 28.96

Totals 45 91 136

3.3.2c PET COHORT

Similar to the MRI dataset, the PET cohort is a subset of the overall 447 patient cohort

used in this study. Once again, only AD/CN patients were used. some with multiple trials

giving more usable data. This dataset was used for PET-only ensemble analysis. Table

1 I gives the relevant subject statistics for this dataset.

Table h/c/ 'l)alcl, tlislics

28 7 74.15 18.98

29 43 70.79 28.88CN 14

Totals 23

3.3.3 ERP ACQUISITION

All ERPs were generated and acquired through the auditory oddball paradigm. Each

patient was seated and made comfortable in a relatively quiet and distraction-free room

while wearing headphones. Before data collection occurred, a 1 kHz tone was presented

to the subject in order to adjust the volume in accordance to the patient's minimum

hearing threshold.

For each patient, the stimulus was provided at 60dB above their hearing threshold,

in order to remove any bias between patients and their respective hearing levels. Both

standard and target tones were presented for 100 ms each. with standard tones playing at

I kHz and target (oddball) at 2 kHz. Novel environmental sounds were at least 200 ms in

AD
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duration, and were not repeated throughout the duration of the recording session. In each

session, a total of 1000 stimuli were presented, with standard, target, and novel tones

played 65%, 20%, and 15% of the total time respectively. Patients were instructed to

press a button upon hearing the target tone, and were instructed to not respond for any

other stimuli. Each stimulus and the associated EEG data are considered one epoch, with

many epochs recorded in one session. For this study, the inter-stimulus interval (ISI)

varied between 1.0 to 1.3 seconds randomly. For most patients, the recording sessions

ran for 30 minutes which included of three minutes of rest every five minutes.

Relevant EEG data were collected from 16 tin electrodes applied directly to the

scalp of the patient, along with two reference electrodes located on the mastoids

(protrusion of the temporal bone behind the ear). All recording was continuous-that is,

recording was not stopped during inter-stimulus times. Technicians administering the

recording sessions ensured impedances for all electrodes did not exceed 20 kW, through

the use of electrically conductive sterile gel applied between the electrode and the patient

scalp. As hair and dry skin can contribute to poor impedance for EEG recording, each

patient was carefully connected to the recording setup to minimize noise, distortion, and

other unwanted artifacts. All signals were amplified and sampled at 256Hz per electrode

channel. This constituted the raw data presented to us for this study.

The processing technique employed in this study involves low pass filtering,

artifact rejection based on an automated derivative analysis process, separation into

stimulus type, and subsequent epoch averaging to obtain averaged ERPs for each patient,

separated into stimulus type. Signals were first filtered with a 2 0th order FIR low pass

filter, with the passband and stopband set at 20Hz and 40Hz respectively. Upon
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completion of low pass filtering, the raw EEC signals for each patient were separated

based on stimulus type. Analysis was conducted 200ms prior to the stimulus and

recorded for another 800ms post-stimulus. creating a I second window for ERP analysis.

A 20 h order derivative was then used for artifact rejection. In this setup. any one second

segment (in this case. any individual epoch) whose derivative was above a threshold was

removed from the averaging process. Equation 3.1 describes this approach.

f (x) - remove
where f(x + 20) - f(x) < threshold
where f(x ± 20) - f(x) threshold

Upon removal of the epochs deemed unwanted artifacts, the remaining segments

were averaged for each stimulus type and patient. This provided three overall ERPs for

every subject. and patients with multiple visits for EEC recordings were included.

Novel Response Patient 189.33AD (OZ Electrode)
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The vertical red lines in Figure 17 indicate the one-second epochs for each

stimulus. Any epoch that exceeds a threshold based on this derivative analysis was

removed prior to averaging. Figure 17a shows the raw EEG signal with artifacts; Figure

17b indicates the location of artifacts identified, which were subsequently removed. All

remaining epochs were then averaged to create the overall response at a given electrode,

for a given stimulus, for each subject. Therefore, each subject had 3 overall stimuli

ERPs, at 16 electrodes. The data length of the digitized vector for each stimulus, and

each electrode was 257; as a result, the overall matrix for a given subject was 257 x 16.

3.3.4 EEG FEATURE EXTRACTION

In the volumetrically processed MRI and normalized glucose region-based analysis with

PET data, single numerical values were given for each feature. No other information

could truly be gleaned from such data-only varying normalization techniques could be

performed. In EEG data however, a vast and generally hidden amount of information lies

within these signals, pertaining to overall cognitive ability. Unfortunately, when these

signals are collected at a scalp electrode, they are essentially a combination of

information originating from various other sources within the brain. While generally not

visible in the raw EEG signal, various frequency bands within the original can be used to

identify specific traits and characteristics, as described previously in Section 2.2.1a.

Isolation of these bands can be achieved in several ways. Techniques to separate

these information sources in the frequency domain allow for a visualization of the

frequency content of the signals . The most common method to achieve basic frequency

domain representation is the Fourier transform (FT). The continuous Fourier transform
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(CFT) is shown in equation 3.2, with the inverse CFT shown in equation in 3.3. X(f)

constitutes the frequency domain representation of the time domain signal, x(t).

X(f) = f x(t)e - 2j ft dt (3.2)

00

x(t) = f X(f)e 2j ft dt (3.3)
-00

The primary disadvantage to using the Fourier transform is the loss of time

resolution. Any signal passed through this transform will have its frequency components

identified; though the points at which these frequencies occurred are lost. Such

information can be extremely important in time-varying signals, such as the EEG. While

the time information remains in the phase response of the FT, this is not generally useful

or relatable in analysis. Hence, the Fourier transform is not an effective approach to

frequency domain analysis of time-varying signals such as the EEG.

One modification to the FT, the short-time Fourier transform (STFT) uses a

windowing approach to overcome the temporal limitation of the FT. This provides a

time-frequency representation of a signal in various time windows. In this approach, a

window is used to segment portions of a time-varying signal, which are then processed

sequentially with the FT to determine the frequency content of these segments .

Equation 3.4 details the STFT, with x(t) as the original time-varying signal, w(t)

as the windowing function, and z is the translation of the window. The fixed width of

the windowing function w(t) in the STFT determines the tradeoff between time and

frequency resolution. The Heisenberg Uncertainty Principle, generally applied to the

uncertainty in measuring the momentum and location of particles, can also be related to



www.manaraa.com

signal analysis. Essentially, the same axiom holds true for time-frequency analysis: exact

frequency and exact time cannot be known simultaneously, thus limiting the trade-off in

resolution .

0

STFTx (r, f) = f x(t)w(t - r)e-i 2 ntdt (3.4)
-00

3.4 THE WAVELET TRANSFORM

The tradeoff between time and frequency resolution in the STFT analysis becomes an

issue in non-stationary signals such as the EEG. When the window size is fixed, certain

frequency bands can be lost in the processing. The Wavelet Transform (WT) addresses

this issue by varying the window size based on the frequency band being prolonged.

Several versions of the WT exist, such as the Continuous Wavelet Transform (CWT), a

discretized version of the CWT called the wavelet series, and the Discrete Wavelet

Transform (DWT) [116]. The DWT is used for the isolation of various frequency bands

in the EEG data used in this study for feature extraction purposes.

3.4.1 CONTINUOUS WAVELET TRANSFORM

In CWT, the time-frequency representation of a signal is calculated using basis

(windowing) functions. The supports for these functions vary, based on scale. Instead of

implementing the FT within each window, the CWT utilizes a correlation metric with the

wavelet function. The width varies based on the scale (or frequency band) in question.

Mathematically, the CWT is described in Equation 3.5, where x(t) represents the original

time-varying signal, * means complex conjugation, T and s represent the translation and
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scale variables for the mother wavelet i0(t). The mother wavelet is translated and scaled

(according to z and s) as shown in Equation 3.6

S(r, s) = fx(t)iP*(t)dt (3.5)

1 t-\
ts,(t) = s - ) (3.6)

The Fourier transform uses complex exponentials and fixed basis functions. In

wavelet transform, any wavelet function that abides by the following constraints can be

used as the basis function. The wavelet must be a wave with an area of zero (Equation

3.7). Furthermore, these functions must also be of finite duration and finite energy

(Equation 3.8).

l(t)dt = 0 (3.7)

Jf (t)Zdt < o (3.8)
-00

In order to calculate the CWT, the mother wavelet's scale is kept constant and

translated across the signal. The scale is then changed, and the translation is then

repeated. This process of compression and expansion is repeated for all desired values of

scale and translation. Unfortunately, the CWT uses a continuously scalable wavelet

function-that is, it is not practical for most real world applications reliant on discrete

signal processing [117,118]. Instead of using an infinite number of scaling and

translation variables, the Discrete Wavelet Transform (DWT) steps these variables in

discrete amounts.
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3.4.2 DISCRETE WAVELET TRANSFORM

CWT is not a discrete transform (e.g. it is represented by an infinite integration for the

scaling and translation parameters), and therefore cannot be implemented on a computer.

Furthermore, the CWT gives redundant information in the signal after transformation,

translating to a high memory requirement. The DWT solves both these issues by

providing a discrete method to transform a signal without the unwanted redundancy for

frequency decomposition and reconstruction of the original signal. Because of this, it is

easier to digitally implement, and also is less computationally and memory expensive in

comparison to the CWT. The entire basis of the DWT comes from the concepts of

multiresolution analysis and subband coding [119].

3.4.2a MULTIRESOLUTION ANALYSIS

Multiresolution analysis (MRA) allows a signal to be analyzed at various resolutions, or

levels of approximation. This process essentially allows any complex function (signal) to

be divided into multiple smaller and simpler functions (frequency bands). Time

resolution is possible with this technique as well, allowing for the time localization of

spectral components. MRA also provides the ability to dynamically change the sampling

rate at each processing level, allowing for a significant reduction in the overall signal

length at each of these levels.

The raw signal is sampled with each consecutive level, at half the prior frequency.

This process removed redundant information, as signal coefficients that pertain

specifically to each band are only retained, thus eliminating overhead. This procedure is

repeated for a given number of iterations (levels), which results in the approximation of

the signal. This approximation accounts for the low frequency representation of the
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original signal. The information removed between samplings corresponds to the high

frequency detail coefficients for each level. At each of these levels, the approximation

coefficients are added to the approximation subspace (As) with the detail information

added to the Wavelet subspace (Ws). W is complimentary with As; therefore, when the

detail coefficients from Ws are combined with the approximation information from As, it

forms As+ 1, which represents the high frequency (level) approximation. This process is

shown in equation 3.9.

As ( W = AS,+ (3.9)

In Equation 3.9, the symbol ) represents a direct summation. These subspaces

are directly related to the approximation and detail coefficients of the signal, where each

of which can be related to x(t) and y(t) such that xs(t) E As and ys(t) E Ws. Equations

3.10 and 3.11 indicate the calculations used to obtain xs (t) and Ys (t), respectively [120].

xs(t) = ak,sq(2st - k) (3.10)
k

ys(t) = wk,sI(2 2 t - k) (3.11)
k

3.4.2b SUBBAND CODING

In the most general sense, subband coding is a method that splits a signal into various

frequency bands, with encoding performed on each independently. This type of

decomposition is commonly used in the first step of compression for digital audio and

video signals. A common codec used for compression that implements subband coding is

MPEG audio [121]. The discrete wavelet transform implements MRA through subband

coding, utilizing digital filters. Specifically, quadrature mirror filters (QMF) are used,
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which are half band lowpass and half-band highpass filters. These filters are used to

create a filter bank that splits the input signal into two bands, resulting from the high and

lowpass filters. The resulting signals are then decimated by 2, yielding a critically

sampled two-channel representation of the original signal. Equation 3.18 shows the

general form of the QMF, where fi is the frequency and the sampling rate is normalized

to 27r.

IHo(e )12 + IH (ejn)12 = 1 (3.18)

Essentially, equation 3.18 states that the power sum of the highpass and lowpass

filters equals one, with their responses symmetric about Rf = r/2. In terms of the DWT,

the wavelet being implemented determines the parameters of the lowpass filter for

decomposition, given by the impulse response h[n]. To generate the mirrored highpass

version of the filter, a conversion is performed on the impulse response of the LPF.

Equation 3.19 show this process, where L is the length of the filter, n as samples, and

g [n] representing the highpass filter.

g[L - 1 - n] = (-1)nh[n] (3.19)

The actual decomposition of the signal occurs when the original signal is filtered

by the lowpass filter h[n] or the highpass filter g[n]. Simple convolution is performed

for the filtering process, done in discrete time. The lowpass filtering method for this is

shown in Equation 3.20 where * represents convolution.

00

x[n] * h[n] = x[k] -h[n - k] (3.20)
k =-oo
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Upon completion of filtering, the two signals now hold the approximation and

detail coefficients of the original signal. For arguments sake, assume that nr is the highest

frequency in the original signal. The signal is therefore sampled at 27r to adhere to the

Nyquist criterion; however, post-filtering, the highest frequency in the signals is reduced

to 7r/2, so the signal need only be sampled at rr. This process effectively downsamples

by 2, denoted by 2 1, and removes the redundant information at the same time.

After this first step, there are two signals--one from the lowpass filtering and the

other from the highpass filter. The signal from the lowpass filter gives the approximation

of the original signal, with a frequency band of 0 to 7r/2. Conversely, the signal from the

highpass filter yields a frequency band of n/2 to ir. As stated previously, both the

signals are downsampled by 2. The overall filtering and downsampling process for both

the high and lowpass filters is shown in Equations 3.21 and 3.22, respectively.

Yhigh = x[n] -g[2k - n] (3.21)
n

Ylow = x[n] . h[2k - n] (3.22)
n

Equations 3.18 to 3.22, done for the first iteration, constitute the first level of

approximation and detail coefficients for the signal. The detail coefficients are then set

aside, with the remaining approximation coefficients used for the next iteration of

filtering and downsampling. This process is repeated until the final level, or frequency

band, is reached. The detail coefficients from all levels constitute the DWT of the original

signal. With each successive filtering and downsampling, the time resolution is reduced

by half. Because of this, the halved bandwidth causes the frequency resolution to double.
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Figure 18 shows an illustration of this process, with g[n] as a HPF and h[n] as the LPF

defined by the wavelet being used. This process is illustrated in Figure 1 8.

I]ll ,~ ~dIj~-4 1281HIL._V 13'
2 n] Q~tI ' A

10(4)1 Ii hcn " :> " -,I -An w2 ld I

Figure 18 -Seven-level DWT decomposition example [122]
This shows the process fior the decomposition of an ERP signal with 128 Hf max frequency
content.
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3.4.2c SIGNAL RECONSTRUCTION

As with any decomposition and frequency analysis technique, it is necessary for a fully

reversible procedure that allows for reconstruction of the original signal. Wavelet

decomposition meets this criterion, allowing for perfect reconstruction of the original

signal provided all levels of approximation and detail coefficients are available [118]. An

estimate of the signal at any level can be obtained by summing the detail and

approximation coefficients for that level. This process is outlined in Equation 3.23,

where s represents the approximation level, a and w are the approximation and detail

signals, respectively, with q and ) as the scale and wavelet functions.

xs(t) + y(t) = I ak,sks(t) + Wk,s,l k,s,(t) = s-1(t) (3.23)
k s

A similar process is followed in the discrete case. The high and low frequency

reconstruction filters can be obtained from the original decomposition filters used in the

initial process. Similar to Equation 3.23, a summation process for the discrete signal

portions is used for reconstruction. Equation 3.24 illustrates this process, which is

repeated at each level and summed to obtain the original signal.

x[n] = Yhigh [k] " g[-n + 2k] + ylow [k] h[-n + 2k] (3.24)
k=-oo

3.4.2d DAUBECHIES WAVELET

There are several wavelet functions available, each with varying characteristics and

generally chosen to fit the specific situation in which it is being implemented.

Specifically, the wavelet must be chosen to match the frequency characteristics of the

signal in question. The Daubechies wavelet allows for perfect reconstruction of the



www.manaraa.com

signal and was chosen for use in this study. In particular, the Daubechies wavelet with 4

vanishing moments (db4) was implemented due to its optimal frequency similarities with

the ERP. The smoothness of the wavelet function adds to its optimality for this situation.

Since the db4 is only an 8-point filter, it is ideal for use in the 256 point ERP signals for

this study. The Wavelet and scaling functions, along with the decomposition and

reconstruction filters are shown in Figure 19.
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Figure 19 - b Wavelet, Scaling function, decomposition/reconstruction



www.manaraa.com

Figure 20 shows a full wavelet decomposition of a sample ERP signal, taken from

an AD patient. The top plot denotes the original signal (red) followed by the 6 h level

approximation coefficients (blue). The remaining plots show the six levels of detail

coefficients for the signal (r ). The approximation and following decomposition

layers each represent a different frequency band of interest within the ERP.

x 10-6 Decomposition at leve6 :s=a6+d6+ d5+d4+ d3 + d2+d

4
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Figure 20 - Wavelet ecomposition ofan example ERP signal [112]Figure 20 - Wavet decomposition of an example ERP signal X1I12]
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3.5 RANDOM SUBSPACE METHOD

In the realm of pattern recognition, it is generally accepted that "more is better" with

respect to the overall ability to adequately train a system. A growing number of

situations incorporate vast amounts of data, with as many features possible collected.

However, this "data overload" poses a real challenge to traditional pattern recognition

techniques. Specifically, the number of samples for any given dataset is generally still

limited with respect to the number of features available. The most classic of pattern

recognition techniques will perform poorly on small sample size, large feature count

datasets; therefore a more meaningful method of making the best use of data is necessary.

Classically, the more features for a given problem, the better-as there is

inherently more information available for use. However, the addition of "too many"

features will lead to a higher probability of error, known as the curse of dimensionality

[123]. This phenomenon is inherently caused by the limited number of samples available

for any given dataset. Even with a large set of features, the system is still limited by the

total available samples for each feature [124]. In relation to this thesis for example, the

MRI T2 dataset contains 29 overall features, with each feature represented by a numerical

value indicting the volume of the specific region of interest. The PET dataset is even

larger, consisting of 43 features with a single numeric representation for each region of

interest as well. Furthermore, we wish to generate several "feature sets" from the

available data, such that these feature sets are different from one another and contain

different combinations of all usable features. This process will be further explained in

section 3.6. Be it through supervised removal of features deemed "noisy" or irrelevant,

or through some automated, unsupervised process, all feature selection strategies all share
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a common goal of reducing the overall dimensionality for a given problem. First

introduced in 1998 by Tin Kam Ho, a random subspace method (RSM) was developed to

reduce a problem's overall dimensionality. Specifically, Ho focused on avoiding

overfitting on a set of training data while attaining high accuracy with decision trees.

A pseudorandom process for selecting subsets of components in a dataset's

feature space to be used in a decision tree method for classification was implemented.

Specifically, this process is determinant on various parameters. The more important

parameter to choose is the number of feature to be selected in the splitting process. These

sampling or splitting processes are determined via various functions and thresholds,

which are detailed in [125]. Ho showed significant classification accuracy improvements

with this method when compared to utilizing all available features for training the

decision tree. Furthermore, it was shown that was more features were introduced to the

problem, the classification accuracy improved when using this method. Conversely,

when a smaller amount of features were present, RSM did not show a statistically

significant advantage over using all available features [125].

This method was expanded and tested for use in this thesis. Specifically, the MRI

T2 and PET datasets were analyzed as candidates for this algorithm. The random

subspace sampling method was employed to aid in feature set diversity, such that each set

trained for a respective biomarker would be "diverse enough" to be used adequately in an

ensemble system (see section 3.6 for detailed explanation of the ensemble systems

employed in this study for each biomarker). By using RSM, the overall dimensionality of

the problem is reduced and more diverse feature sets are generated that can be used in

later ensemble system evaluation [124].
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3.6 DATA PROCESSING TECHNIQUES

The algorithm developed in this thesis utilizes features extracted from the EEG, MRI, and

PET data for all subjects available in the cohort. As discussed previously, the EEG data

features are the wavelet coefficients of specific frequency bands of interest, ranging from

OHz to 8Hz. For MRI, the raw data consists of topographic images of the brain, taken in

series perpendicular to the coronal and parallel to the transverse planes. Since the overall

cranium size of patients can vary, an elastic warping algorithm was implemented to

transform images into a standardized space, while preserving the overall morphological

characteristics of the brain.

The raw MRI image was then segmented into white matter, gray matter, CSF, and

ventricles. An overall density map of the image was calculated, and the total inter-cranial

volume (ICV) for the patient was determined. Through these density maps, conclusions

were drawn regarding the overall atrophy of various segments of the brain. The overall

density map was split into various overlapping portions, based on an automated region of

interest (ROI) analysis. This removed cranium and bone regions visible in the MRI,

leaving only volumetric representations of specific regions in the brain. This process was

repeated for every image slice, with each consecutive slice compiled and merged. Voxel

analysis is performed to quantize the volume of each ROI [112]. The overall process

used for this analysis shown in Figure 21.

With this voxel analysis complete, a total of 14 unique, anatomically defined

regions were created in each hemisphere of the brain, giving a total of 28 features for use

in the MRI data. Different regions of interest were then analyzed across different patient
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groups and clIassiftications. Lach patient had an i nter-cran ial s lI nie i tc a > cialcc.

wxhich allowxed for normalization hctetxen patient,,.

I IgO/ c - c(lt it u of inmagt /flotC \ .ilii for T2 .1111la/a 1 1

One slice of proessing is i/lust rated, showing4 the original image on the lefi, the tissue
5 egm'ented image in the middle, and the xarpet imhage with the ROAs highlighted. ROAs are
us~ed to define region~s for mnathenmatie, quantization of the Vo/lmetriC data witithini the WIRI.

T he region-based features generated through this ROI analy sis wxere as follows,5

wxith each region consisting of' both a left and right hemisphere component as wxell:

anterior/posterior cingulate cortex. frontal lobe gray/wxhite matter. parietal lobe

gra/wxhite matter, occipital lobe gray/wxhite matter, temporal lobe gray/wxhite matter.

insular cortex. lateral v entricle. medial temporal lobe, and the hippocampus [126-129].

[or training and testing, a random subspace sampling method wxas used to create diverse

classitiers from these 28 overall features. Random subsets ranging from 16 to 28 features

wxere taken from the overall set to generate distinct classitication sets in order to match

the number of I Rl and PETI experts for the ensemble system. wxhich helps to ensure

similar voting wxeights and expert counts.

After preprocessing (tiltering. baselining. artifact rejection), the [RlP data wxas

decomposed using the discrete wxavelet transform wxith the Daubechies 4 wxavelet.
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Computing the DWT on a I second ERP signal sampled at 256 Hz yields 7 detail

coefficients. The ERP consisted of a 200ms pre-stimulus recording, and a 800ms post-

stimulus recording. However, since the majority of pertinent information in the ERP is

found between 0-600ms post stimuli, the 200ms pre-stimulus and last 200ms of the

overall signal are removed. Four frequency bands of interest are generated through the

wavelet decomposition of the ERP, shown in Table 12.

Table 12 DWT Coefficients and Frequency bands for ERP

Frequency Band O-1Hz 1-2Hz 2-4Hz 4-8Hz
# of coefficients used 7 6 7 11

Figure 22 shows a breakdown of the seven detail and one approximation

coefficients generated through the wavelet decomposition of the ERP. Highlighted are

the four frequency bands of interest. This is similar to Figure 20, with the exception of

the addition of the 7th level decomposition.
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F'igure 22 -DWT of ERI with frequency, band's of interest highlighted [130]
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These varying frequency bands were used to create multiple sets of features.

referred to in this study as "feature sets." These ERP feature sets were combinations of

differing electrodes. stimulus types (novel or target), and frequency bands. Table 13 lists

several example feature sets used in this study.

Table 13 ERP Feature Set Examnples

Combination Type Abbreviation
2-4Hz Band 24

1-2Hz Band 12

0-1Hz Band 01
1-2Hz Band 12

For this study. only the first three frequency bands were analyzed (0-1Hz. 1-2Hz,

and 2-4Hz). Earlier studies have shown better performances with these frequency bands,

as more complementary information appears to lie within these ranges . The final ERP

expert system utilized multiple feature sets to evaluate and generate a decision for any

given subject. These "experts" were combined with various classifier combination rules,

which will be discussed later in this document.

The PET data was processed in a similar fashion to the MRI data. In this case,

multiple features were created from over 40 regions of interest in the brain. Instead of

measuring volumetric data relating to brain mass, the PET data consisted of images

representative of the metabolic activity from glucose of various regions of the brain.

These readings have been shown to provide pertinent information in the deterioration and

decline in brain function [11]. The image slices were taken into Neurostat software,

which is specific to PET scan analysis. The data presented to us comes after all image

processing, and is similar to that of the MRI data. 43 total features were available, along

with the data from each subject's pons, which can be used for normalization.
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3.7 CLASSIFICATION METHODS

There are many methods for automated classification on a computerized system. These

methods can be supervised (training with labeled class data) or unsupervised (training

with unlabeled examples). For the purposes of this study, all classification was done in a

supervised manner, as the classifier was presented with labeled training data for learning

purposes. The entire basis of an automated classification algorithm is that it can learn

hidden patterns within data to identify and classify previously unseen new data, based on

these underlying distributions.

Generally, the first step prior to any classification system implementation is the

extraction of relevant features to be used in the training and evaluation of the system.

The classifier is then trained on this data, which is done by presenting correctly labeled

instances of various classes. Training for the majority of these classifiers is essentially

variations on a method to find a function that maps a given set of features to their

respective correct class labels. As such, many classifiers are also referred to as "function

approximators" [131].

One of the most commonly researched and implemented classification algorithms

originates from artificial neural networks. These systems were initially modeled from a

biological viewpoint on how neurons within the brain communicate and "learn." These

algorithms work by adjusting internal parameters based on provided training data. Upon

training, these algorithms then make a classification on previously unknown test or field

data, based on their weights adapted to learn the training data. One of the most common

types of artificial neural networks is the multilayer perceptron (MLP).
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3.7.1 MUL TILA VER PERCEPTRON

The multilayer perceptron is a feed-forward' artificial neural network that attempts to

map input data onto a set of appropriate outputs. based on classification labels. It is a

modification to the single-layer perceptron (SIP). The overall concept of the perceptron

comes from the biological model of the neuron, shown in Figure 23.

Dendrites Cell body Axon Synaptic(soma) terminals
Figure 23 - Diagranifor the biological representalion of the neuron [132]

One of the greatest strengths of the MLP over the SLP is its ability to classify data

that are not linearly separable. This strength is created by the addition of hidden layers of

neurons with non-linear activation functions. allowing for greater complexity and the

ability to generate non-linear hyperplane decision boundaries. Figure 24 shows a typical

network structure for the MLP, with three features for a two class problem.

Hidden Layers
Input
Layer Output

\ Layer

Inputs X 2 -_ Outputs

x3

WWik

W kj

Figure 24 -Structure of the MILP wiith two Hidden Lavers
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The first set of nodes corresponding to the input layer, which accepts relevant

input data (features) and forwards this information to the 'hidden' layer nodes. The total

number of input nodes corresponds to the number of features in the data being used for

training. The number of hidden layers and corresponding nodes is specified by the user

prior to training, and varies based on the dataset, features, and other factors. The final

layer constitutes the output nodes, each of which represents a different class or label.

These outputs are encoded in a binary sequence. In the MLP, the input layer only serves

as a method to accept data into the network; the hidden layer and output layer nodes

perform computations from data based on specific weights assigned to each during

training. Specifically, these weights are generated and optimized through the back

propagation algorithm [112,133].

The back propagation algorithm was developed to optimize the synaptic weights

assigned to hidden layer and output nodes in the multilayer perceptron. The process for

back propagation is a four-tiered procedure: initialization of weights, presentation of

training data, forward computation, and backward computation. Pairs of nodes are

"linked" together with a synaptic weight attached to the coupling. These weights

constitute the "knowledge" of the neural network. In the initialization stage, the weights

are randomly initialized from a zero-mean standard distribution. The variance is chosen

such that the standard deviation of the induced local field of a node lies in the transition

area between the linear and saturated region of the sigmoid activation function [134]. For

this study, the hidden layer nodes were used with a tangential sigmoid activation

function; this activation function created restrictions on the output of a node given some

input characteristics.
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Upon creation of the neural network, which included initialization of the synaptic

weights for all nodes, training data were presented at the input, along with correct

corresponding class labels. A process of forward and backward computation was

performed for each instance of the training data, until various stop conditions were

reached. The two most common of these restrictions was a maximum number of epochs

(iterations) or a minimum error goal. There are numerous activation functions that can be

used in the MLP. Two of the most commonly implemented are the logarithmic and

tangential sigmoid shown in equations 3.25 and 3.26. Figure 25 shows a graphical

representation of these functions [135].

1
p(n) =1 + e- n  (3.25)

2
<p(n) = 2 - 1 (3.26)

1 + e-2n

Tan-Sigmoid Transfer Function Log-Sigmoid Transfer Function

' T05

0 0
a = tansig(n) a = Logsig(n)

Figure 25 Tangential and Logarithmic Sigmoid Activation Functions

Regardless of the activation function used, the overall back propagation operates

the same. This process was then repeated by presenting new sets of training data and

corresponding labels until the stop conditions were met.
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3.7.2 K-FOLD CROSS VALIDATION TECHNIQUE

In real-world situations, only one dataset is availahle for training and testing. With 50/50

validation scenarios, where half the data is used for training and the other half for testing.

a true generalization performance cannot be determined. The use of a cross-validation

method is the best overall technique to estimate the true generalization performance of a

given classification system. In K-fold cross validation, the data is split into K blocks,

where K - 1 blocks are used for training and the Kth block for testing. This process is

repeated K times, with each iteration using a different block for testing. Each run

performance is then averaged for the best estimation on the system performance [136].

Figure 26 illustrates this process.

Original Dataset (N instances)

1 2 K-1 K Runi Performancel P

1 2 K-1 K Run t Performance2 Z
Generalization

n Performance

'i 'K,1
1 2 K-i K Run K-1i- PerformanceK-1

1 2 K-i K Run K PerformanceK P,

Figure 26 - K-Fold 'ross validation for generalization perfornmance

Blue blocks for indicate the test set used Gray blocks comprise the training data for the
system. The K total runs are averaged o give the overall gen eralizationl performance.

In this setup, a small K value will reduce the amount of data available for training.

which is of particular concern for small datasets. Conversely, a large K value will result

in a larger amount of training data available and possibly a more accurately trained

classifier: however, this comes at the expense of greater computational time and a more

varied overall performance. If a dataset contains N instances and K-fold cross validation

is performed with K = N. a specific type of validation is created, termed "leave one out"
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(LOO). The initial trials done in this study involved LOO at one step of the classification

process; however, this has since been removed and replaced with a 10-fold cross

validation loop instead. It was shown that the LOO method was overly computational

expensive and did not provide a better estimate in comparison to 10-fold CV.

3.8 ENSEMBLE OF CLASSIFIERS BASED DECISION MAKING

The concept of an ensemble of classifiers based decision making system was to combine

information from multiple sources in the attempt to achieve a greater generalization

performance. In this study, a decision-based data fusion approach was taken to combine

EEG, MRI, and PET data to make the most informed decision possible in the

classification of AD versus normal control patients. The decision based data fusion in

this study was done by generated an ensemble of classifiers in a mixture of experts

structure, based on the relevant EEG, MRI, and PET data available. Each biomarker for

AD constituted an overall expert, with each expert containing a complex ensemble

system that has multiple classifiers. These multiple classifiers can be related to a panel of

experts in decision making, which attempts to increase reliability and accuracy in making

the final decision for any given patient. Since each classifier in this system generated its

own distinct decision boundaries, each classifier subsequently have its own error. The

combination of these decisions from multiple classifiers helps to reduce overall error in

such a system. However, it is crucial that such an ensemble system contain sufficiently

diverse classifiers, each trained on complementary data. Therefore, the overall EEG,

MRI, and PET experts all contained sub-experts, trained on complementary feature sets

that promote classifier diversity to boost overall system generalization performance

[137].
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3.8.1 DECISION-BASED DATA FUSION

Decision fusion based data fusion refers to combination of decisions made by individual

classifiers, as opposed to feature based data fusion where individual features are usually

concatenated. In this study, we used a modified (augmented) stacked generalization

approach to obtain feature level decision fusion for each biomarker (EEG, MRI, PET),

followed by a combination of these decisions to create the final, across-features decision

fusion for the specific marker. Each biomarker was itself an expert, which was combined

using a classic classifier combination method or another stacked generalization routine.

3.8.2 STACKED GENERALIZATION

The primary goal of stacked generalization is to confirm or correct what has been learned

by a group of preliminary (Tier-1) classifiers with the use of a meta-classifier. Any

instance in a certain region of the feature space (e.g., near the decision boundary), may be

more likely to be misclassified by certain classifiers than others. This trend can be

learned by mapping the outputs of an ensemble of classifiers to their true labels (Figure

27) thereby allowing the system to adapt to classifiers with varying performances [138].

CC,

ZNC w + hFinal

Ct+ht h, U
TER-1 C

CLASSIFIERS

Figure 27 - Stacked Generalization diagram [ 139]
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3.8.3 A UGMENTED STACKED GENERALIZATION

We use a modified version of stacked generalization, called the augmented stacked

generalization (ASG) by augmenting the Tier-I classifier outputs with the original data

used to train them. before training the meta-classifier. Such a process enriches the

intermediate feature space used by the meta-classifier, aiding in overall system

performance. This process is shown in Figure 28.

" c I h1

z o hhht-1Z }-Ct tw N Final
hT U

j h t+1 Ul
TIER-1 CT

CLASSIFIERS
'---- -------------------------------- I

Original training data appended to Tier-i hypotheses prior to Meta classifier

Figure 2S ,, itgincnfeel Stacked (icwrali~ation diagram [ 1391

The actual training process is rigorous, to ensure a true generalization

performance metric. The initial data of length K was first segmented into six blocks of

approximate length K/6. One block was set aside to be used for a final evaluation of all

feature sets generated in the ASG algorithm; the remaining five blocks were fed into the

ASG algorithm as training data. This training data was split once again through 5-fold

cross validation, with one block set aside to for evaluation. The remaining data was sent

to the internal/tier-I classifiers for training and testing. This data was split through 10-

fold cross validation, with the test set used to evaluate the tier-class classifiers. The

respective classifier outputs were placed into matrix form. These classifier hypotheses
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were augmented with the test data used in that fold, and the process is repeated until all

ten ids have run. Upon completion of these ten folds, a matrix sized (18 + d) x N is

created where d represents the length of the appended test data. N as the overall ASG

training data, and 18 being the support outputs from the nine tier-I base classifiers. This

entire matrix was used to train meta-classifier with the correct respective class labels.

thus completing one internal fold of ASG. A diagram of this process is illustrated in

Figure 29.

Initial Data: 6-Fold CV for System Evaluation

................... ................ i.................... ................. ............................................

ASG Test Data ASG Training data (from 5-fold CV, length Nj

r - Test Internal/Tier-1 Training data (from 10-Fold CV) 1
Internal Test
(d z (N/10)) !-J±'~L

Block Size
( x (N/10))

Outputs of Tier-i Classifiers
C1  j...... 4 V

2 
V"' 

3  
sy1 vi 0 i mapto Input of MetaClassifier

C 1 ' ' 1 yS2 y 13 y19 1y5
C 5MetaClassifier

C9  - y91 I y9
2  

y
93  

y
9
9 i V

90

. VTotal Block Size
1--. -o Yoi (18+d)xN

1 Column per Internal Fold

Figure 29 - Illu.sration of ihe Ihre-tic rcdl cr'ss validation setu foA)SG

The original training labels are used in the training process, allowing the meta-

classifier to determine - and correct - poorly performing classifiers. In the intermediate

training stage of ASG. the original Tier-I classifiers are discarded. and all instances of

the training data are collected. The Tier-I classifiers are then retrained on the entire

training data subset. During the testing stage, a given test instance is sent to the Tier-I
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classifiers. The output from these classifiers (augmented with the original feature vector)

is then sent as an input to the meta-classifier. This output from the meta-classifier then

constitutes the final decision and output of the system.

Inputs for Algorithm Augmented Stacked Generalization (ASG)

Training dataS =1x1 9x2,.,xN}, x; E R°with correctlabelsy, En, O ={W1 ,.",W,.}

* Supervised classifiers for BaseClassifier and a MetaClassifier, which can be of the same type.
* Number of classifiers Tto be generated

Initial Training: Train Tier-i classifiers:

" Divide S into K blocks of size N/K, i.e. S1, S2...,Sk, (extreme case K = N, LOO Validation)
" Dofork=1,2,...,K

o Define §(k) = S- Skbe the concatenation of k-1 blocks of data, not including the kth block Sk
o Train classifiers C1,...,CT on St-k
o Test classifiers CI,...,CT on Sk
o Let yt,A E [0 11C'N, t = 1,...,T(each of size C x [N/K]) be the continuous-valued output of C,
End Do loop

" Combine K blocks ofy,,k from all Tclassifiers to obtain new instances Y,, n=1,...,N each of
length C T

Train meta-classifier CT+I:

" Form the augmented (intermediate feature-space) vector yn by concatenating Y~ with the original
x, used to obtain Y~ from Tier-i classifier outputs: Y=[Yn xj], n=1,...,N, each of size C T+d

" Train MetaClassifier CT+1 using N instances of Yn along with their corresponding class labels
W,...,WC;

Intermediate training

" Discard all Tier-i classifiers, and pool all training data to obtain S.
" Retrain Tier-i classifiers CI,...,CTO the entire training data S

Testing: Given an unlabeled instance z

" Obtain and concatenate the outputs of C1,...,CT, to form the intermediate space feature vector Z
" Augment Z with the original z to obtain Z =[ Z z i
" Obtain the output of CT+1 for Z as the predicted label for z

Figure 30 - Pseudocode for Augmented Stacked Generalization [139-1411

The output from the ASG algorithm is a decision-fusion based expert for each

data source. Training an ensemble of such experts (each with data from different sources)

creates a decision fusion based data fusion approach. There are many methods available

for combining ensemble of classifiers' outputs, and the methods implemented in this

study will be discussed in the following sections. The final combination of all these
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experts is shown in Figure 31. Each expert is essentially a feature set for a given set of

biomarker data. For example, with EEG data a feature set would be the ASG algorithm

trained on data derived from a novel response at the PZ electrode with a frequency band

of 1-2Hz (NPz12).

An individual classifier Augmented Stacked

Q Meta-classifier for stacking

E71  Generalization

Signals obtained
from differentFia
data sources

Deision

F4,

EL E eisemble of lassi fe rained
on data from a specific source

Classifier combination rul
Feature - specific expert ensemhles of classifiers C

trained using stocked generalization

Figure 31 - ASG ensemble system, showing expert decision fusion [139]

This figure illustrates an example of one biomarker, with several experts. For individual
biomarker classification, these experts are combined with some classifier conhination rule.
For multiple biomarker combination, the experts from all bionlarkers are combined.

The system is modified only slightly for each biomarker. As stated previously,

each feature set in EEC constitutes a different frequency band, electrode, and stimuli.

For MRI and PET, each feature set used in ASG is created through random subspace

sampling of the available features in order to create a diverse set of experts. Furthermore,

the number of feature sets between all biomarker data sets was chosen to be the same in

order to facilitate a fair and balanced decision fusion system. Irrespective of the

biomarker used, the ensemble system generates a user-defined number of total feature

sets. each containing an ASG expert to be used for final decision fusion.
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3.8.4 COMBINATION RULES

There are numerous classifier combination rules that can be used for ensemble system

decision fusion. For this study, three of the most common rules were analyzed as each

has consistently proven to prove the best overall method for expert combination.

Sum Rule

The sum rule works on the principle of support based or probabilistic classifier

outputs. For example, the MLP gives a continuous output, di, E [0, 1] with a support

given by a classifier Ci to class j, where i = 1, ..., T and j = 1, ..., c with T as the total

number of classifiers and c as the total number of classes. The support for each class

from a given ensemble system are summed, and the class with the largest sum is selected

as the overall decision. Equation 3.42 shows this process mathematically.

T

yi (x) = T I di, (x) di,j (x) E [0, 1] (3.42)
j=1

Simple Majority Voting

Simple majority voting works on the principle of class decisions based on the

principle of majority rule. Essentially, a final class decision is chosen based on which

class the majority of classifiers in the system selected. The support structure for each

class is shown in Equation 3.43.

T

j (x) = dij (x) di, (x) E [0, 1] (3.43)
j=1
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Weighted Majority Voting

Weighted majority voting is similar to simple majority voting in that total votes

are simply tallied. The difference here is the ability to "weight" the decisions of each

expert/classifier. Generally, these weights are assigned based on validation performance.

Equation 3.44 shows the support structure for each class based on this method.

T

(x) = W(Ci)dij (x)

j=1

d , (x) E [0, 1]

Figure 32 illustrates a sample of all three combination methods, based on a two

class problem with five classifiers. Respective weights are given for each classifier,

along with their support outputs for each class.

Classifier 1
(weight: 0.1)

C1 C2

0.2 0.8

Maiority Voting:
Sum Rule:
Weighted M.V.:

Figure 32

Classifier 2 Classifier 3 Classifier 4 Classifier 5
(weight: 0.2) (weight: 0.1) (weight: 0.4) (weight: 0.2)

C1 C2 C1 C2 C1 C2 C1 C2

0.7 0.3 0.6 0.4 0.3 0.7 0.1 0.9

Class 1 Class 2

2 votes 3 votes

1.9 3.1

0.36 0.64

Example of classiier/ensemble system combination rules

3.9 CLINICAL DIAGNOSITIC MEASURES

Arguably more important than merely overall system accuracy, clinical diagnostic

measures allow a more in-depth view at how well a given system performs on various

classification scenarios. Specifically. these measures include positive/negative predictive

value, sensitivity, and specificity. Each of these measures is calculated based on the total

(3.44)
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number of true positive/negative and false positive/negative diagnoses achieved from a

classification system. The breakdown of how each is calculated is shown in Table 14.

Table 14 - Breakdown ofdiagnostic performance metrics

D)iagnostic Condition
Positive Negative

Truc Positive I alse Positive
Positive

Test (TP) (FP)
Condition False Negative True Negative

Negative FN TN)

To calculate positive/negative predictive value. sensitivity, and specificity the

diagnostic performance metrics of a system must first be known. Positive predictive

value (PPV) is the probability that a subject has the disease, given that they tested

positive. Similarly, negative predictive value (NPV) is the probability that a subject does

not have the disease in question, given they tested negative. Sensitivity is a measure of

how well the system can recognize all true positives; in other words, those individuals

that truly have the disease. Likewise. specificity measures how well the system can

correctly identify those patients that do not truly have the disease in question. Based on

the information from Table 14, the following relationships for each measure can be

determined:

TP
PPV TP + FP (3.45)

TN
(3.46)

NPV TN + FN

TP
Sensitivity TP + FN (3.47)

TN
Specificity TN + FP (3.48)
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CHAPTER IV

RESULTS

The results presented in this section are divided into three main segments: single dataset

performance, ensemble system combination performance, and preliminary disease

severity analysis. All three biomarkers were tested alone, and with each other in all

possible combinations. ERP from EEG processed with the wavelet transform were used,

along with quantized MRI data and PET data. Normalization methods for MRI and PET

data were also tested, with respective results tabulated.

For this study, only AD versus CN was analyzed; however, in the severity

analysis, mild/moderate AD versus severe AD versus normal control subjects was

compared. All accuracies within this section are based upon the diagnosis of expert

neurologists, and may not be representative of the true patient diagnosis. For example, a

performance of 95% would indicate a diagnostic accuracy of 95% correct with respect to

the expert diagnoses provided for each cohort.

4.1 SINGLE DATA SET PERFORMANCES

Different subject data and normalization techniques were explored for each biomarker to

determine the best overall method to be used for ensemble system combination. Basic

demographics and MMSE scores for each cohort used for their respective biomarker are

tabulated and detailed in each of the following sections. A final visual comparison of all

individual performances along with confidence intervals is provided in section 4.1.4.
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4.1.1 EEG (P300 ERP ANALYSIS)

In the EEG P300 analysis, there were a total of five different cohorts and electrode

feature sets tested. Each table lists the cohort used, as well as relevant statistics for all

subjects. Furthermore, various feature sets were analyzed and their combination

performances for the ASG algorithm are detailed. There were two primary sub-cohorts

generated for this section based on the visual ERP analysis performed for each subject.

Table 15 lists basic information for the first of such sub-cohorts, based on the satisfactory

only ERPs from the visual analysis.

Table 15 - Satisfactory Dataset Cohort Statistics
Male Female MMSE Age

AD 21 33 54 20.60 76.44
CN 13 40 53 28.94 70.28

Totals 34 73 106

Table 16 lists basic information for the second sub-cohort generated, this time

based upon both the satisfactory as well as marginal ERPs from the visual analysis.

Table 16 - Satisfactory + Marginal Dataset Cohort Statistics
Male Female MMSE Age

AD 39 46 85 19.20 76.02
CN 24 55 79 29.05 72.16

Totals 63 101 164

These two sub-cohorts make up the primary data used for analysis of the EEG

biomarker. A subset of the satisfactory only cohort was used to perform analysis on first

visit only subjects, detailed in section 4.1.1a.

4.1.1a FIRST VISIT SUBJECT ANALYSIS (18 FEATURE SETS)

This dataset consists of 101 subjects (44CN, 57AD) chosen for first visit subjects only

from the satisfactory only dataset. The ideology behind this choice was to determine

whether using date that consisted of subjects with AD from first diagnosis had any effect
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on system performance with respect to later tests run w ith multiple visit subjects. Basic

demographic and MMSE scores for this subset are shown in Table 1 7. The accuracies of

the individual feature sets within this cohort are show~n in Table 18.

Table 1- Satis/actori Dataset (I" F'Iisit) C ohort Statistics

Male
AD 22
CN 13

Female
35
31

MMSE Age
20.49 76.39
28.79 70.19

Totals 35 66 101

Table 18 -Sat istfactory' Dataset (1I" Visit) Cohort Performances

'GP5' 'GP' SN' SP' 'PPV' 'NPV'
'TP3O1' 67.43+1.9% 74.25% 83.15% 58.50% 52.43% 62.69% 58.06%
'TP312' 67.84+2.0% 75.46% 84.25% 59.66% 51.63% 62.73% 58.44%
'TP324' 71.30±1.6% 77.87% 88.17% 61.60% 57.48% 66.34% 62.66%
'TPZ0I) 67.11±1.8%o 73.25% 81.13% 57.96% 51.98% 62.34% 57.91%
'TPZ12' 67.47±1.6% 174.08% 83.21%o 58.87% 51.29% 62.11% 58.22%
'TPZ24' 68.14±1.8% 75.24% 87.13% 58.51% 53.41% 63.05% 58.96%
'TCZO1' 65.02±1.1% 72.10% 81.19% 56.67% 48.67% 59.98% 55.28%
'TCZ12' 64.73±2.0% 71.91% 80.33% 56.03% 49.47% 60.10% 54.97%
'TCZ24' 69.30+1.6% 75.86% 83.21%o 60.55% 53.48% 63.83% 60.52%
NP301' 65.92±0.8% 72.89% 83.15%o 56.87% 51.29% 61.16% 56.55%
NP312' 67.34±1.0%o 75.85% 87.13% 57.76% 53.45% 62.80% 57.76%
'NP324' 69.49±1.0% 76.28% 85.23% 60.31% 54.96% 64.50% 60.85%
'NPZO1' 66.42±1.3% 72.87% 81.19% 57.50% 51.13% 61.30% 57.19%
'NPZ12' 66.45±1.4% 73.14% 79.29% 58.80% 49.68% 61.61% 56.91%
'NPZ24' 70.66±1.0% 77.63% 86.15% 61.98% 55.50% 65.66% 62.47%
'NCZO1' 64.43±1.1% 72.36% 83.27%o 56.54% 47.94% 59.51% 55.24%
NCZ12' 65.09±1.6% 72.50% 80.27% 57.91% 47.75% 60.20% 56.03%
NCZ24' 65.92+1.5% 72.70% 81.25% 58.38% 49.56% 61.24% 56.92%

Acronyms: OGP (overall group pcrlo/uncc, GP-5 (best o/ 5) tr.ial group per/ormance)
GP (best group pert ormance)i, SN (sensitivity)i, SP (specificity)
PPV (positive predictive value), NPV (negative predictive value)

In Table 1 8, it is clear that the P3 electrodes tend to perform the highest, with PZ

close behind, with higher accuracies for target tone analysis. The first visit cohort used

18 total feature sets including the P3, PZ, and CZ electrodes only, w~ith frequency bands

from 0-4Hz. Table 1 9 shows the feature set combinations used and respective

OGP'
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performance for sum rule and simple majority voting decision fusion. The individual

feature set combination lists (FS 1 - FS4) are listed below.

FS1: TP324, NPZ24, NP324, TCZ24, TP312, TPZ24
FS2: NCZ01, NCZ12, NCZ24, TCZ01, TCZ12, NP301
FS3: TP301, TP312, TP324, NP301, NP312, NP324
FS4: NPZ24, TCZ24, TPZ24, NP312, TPZ01, TPZ12, TP324

Table 19 - 1s Visit Data Fusion Performances
SUM Avg (%) Best (%) SN (%) SP (%) PPV (%) NPV (%)

81.3±2.9 90.5 81.3±2.1 80.0±2.9 83.5±3.5 81.6±2.4

76.93.2 83.8 78.2m2.3 81.22.2 81.512.5 804±i1.9

79.22.8 88.3 76.52.9 79.22.7 78.52.0 78.62.6
81.8±2.1 91.3 81.6±2.8 83.5±2.4 82.41.9 81.53.1

SMV Avg () Best (%) SN (%) SP PPV (%) NPV (
79.2±2.7 89.2 80.2±2.5 81.2±2.4 79.8±2.2 80.2±2.5

75.7+2.3 86.2 77.3±2.4 80.5±2.3 79.42.6 80.3±3.0
75.411.9 85.6 78.2±3.1 78.53.1 77.42.1 79.42.8
77.0+2.9 90. 2  79.3±2.8 77.42.7 78.33.2 78.52.6

In this test, the highest overall diagnostic accuracy reached was through a sum

rule combination of the FS4 combination list, achieving 81.8±2.1%, shown in Table 19.

From Table 18, it is clear that the parietal electrodes tend to have a higher overall

diagnostic accuracy when compared to the CZ electrode. Target stimuli also proved to

show a slight performance advantage when compared to novel stimuli.

4.1.1b NEURONETRIX ELECTRODE ANALYSIS (36 FEATURE SETS)

For the next two cohorts tested, 36 total feature sets were generated, corresponding to the

P3, P4, C3, C4, F3, and F4 electrodes, once again only using frequency bands between 0-

4Hz. Neuronetrix is a company based out of Louisville, KY for which we perform EEG

analysis. The electrodes in this test represent the electrodes used in Neuronetrix's

prototype COGNISION system for AD diagnosis currently under FDA review [142].

The first test for this analysis utilized the satisfactory only EEG dataset, comprised of 107

total subjects (54CN, 53AD). Individual feature set accuracies are shown in Table 20.
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Table 20 36 FS: Sat is/arctorv Dataset Cohort Performances

'GP5' 'GP' 'SP' 'PPV' 'NPV'
'TP3O1' 65.94±1.5% 75.36% 81.54% 64.32% 66.67% 66.35% 64.85%
'TP312' 70.99±1.1% 78.18% {84.32% 71.52% 69.36% 71.38% 70.46%
'TP324' 65.43±.2%o 73.14%~ 77.78%o 63.89% 65.60% 65.64% 64.22%
'TP4O1' 66.50±2.1% 74.63% 84.32% 65.73% 65.83% 66.18% 65.56%
'TP412' 65.96±2.1% 74.48% 80.61% 66.42% 64.13% 65.87% 65.07%
'TP424' 65.83±2.1% 73.25% 80.78% 63.75% 66.41% 65.80% 64.74%

'TC301' 63.78±1.0% 70.79% 78.81% 64.28% 62.19% 64.14% 62.40%
'TC312' 65.74±2.1% 74.49% 83.50% 66.46% 64.36% 65.70% 65.14%

'TC324' 64.60+1.0% 73.16%o 83.44% 63.71% 64.01% 64.33% 63.50%
'TC4O1' 63.55±1.5% 71.30%o 77.83%o 63.86% 61.50% 63.49% 62.54%
'TC412' 65.94+1.2% 72.76% 78.76% 65.24% 65.48% 66.33% 65.05%
'TC424' 65.41±0.9% 73.91% 81.59% 64.85% 63.61% 65.04% 63.72%
'TF3O1' 61.29±1.7% 69.57% 77.78% 61.67% 59.70% 60.91% 60.40%

'TF312' 63.11+1.4% 71.66% 79.74% 63.08% 62.60% 63.50% 62.48%
'TF324' 62.71±1.6% 70.95% 82.52% 61.76% 61.95% 62.21% 61.42%
'TF401' 59.98±1.9% 68.53% 77.02% 59.24% 59.18% 59.71% 58.77%
'TF412' 61.45±0.6% 71.28% 78.71% 61.76% 59.56% 61.41% 59.98%

'TF424' 63.41±1.7%o 70.73% 79.740 63.57% 61.97% 63.72% 62.16%
'NP3O1' 62.74+1.6% 70.21% 75.11% 63.43% 60.94% 62.64% 61.69%

'NP312' 65.50+1.9% 72.76% 81.48% 64.79% 64.85% 65.55% 64.47%
NP324' 64.61+2.2% 72.28% 80.67% 63.92% 63.76% 64.63% 63.53%

'NP4O1' 66.08±1.4% 72.77% 77.78% 66.01% 64.88% 65.69% 65.18%

'NP412' 62.39±0.7% 70.17% 79.69%o 62.01% 61.09% 61.86% 61.30%
NP424' 66.94±1.0% 75.48% 82.57% 65.81% 66.80% 67.04% 65.50%
NC3O1' 60.94±1.1% 67.74% 78.76%o 59.35% 60.74% 60.42% 59.66%
NC312' 61.67±1.0% 69.27% 77.89% 60.03% 61.65% 61.33% 60.40%

'NC324' 63.87+1.8% 72.79% 79.69% 63.05% 63.55% 63.39% 63.07%

NC4O1' 61.74±1.8% 70.22% 76.96% 61.91% 60.39% 61.88% 60.41%
'NC412' 65.50+1.8% 74.27% 79.74% 66.35% 62.79% 65.22% 64.05%
'NC424' 63.23±0.6% 71.29% 79.69% 62.01% 63.44% 63.24% 62.43%
NF3O1' 63.25+1.3% 70.93% 78.81% 62.18% 63.09% 63.14% 62.33%
NF312' 66.12±1.6% 73.15% 79.74% 63.76% 67.02% 66.10% 64.77%
'NF324' 60.46±1.6% 66.69% 73.20% 58.96% 60.12% 60.43% 58.89%

'NF4O1' 62.38±2.1%o 69.63%o 75.06% 61.67% 61.48% 61.85% 61.18%
'N F412' 62.45±0.9% 70.55% 79.69% 61.66% 62.06% 61.99% 61.64%

60.01±1.4% 67.23% 178.87% 58.09% 60.71% 59.72% 58.93%

.Acronms: OGP (overall group p~er/ormance), GP-5 (best (?/5 trial group /)erfinrmance)
GP (best group p)er/( wmance), SN (s ens itivity), SP (speci/itcitv)
PPV (positive predictive value), NPV (negative predictive value).

Once again, we notice a trend with parietal electrodes tending to have higher

accuracies, with target tone analysis yielding the highest results. The frontal electrodes

OGP'
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tend to have the lowest overall accuracies of the test, regardless of stimuli. The
combinations used for this test are listed below.

TP3O1,
TP3O1,
TC412,
NP3O1,
NC412,
TF4O1,
TP3O1,

SUM

TP312,
TP312,
TC424
NP312,
NC424
NF424,
TP312,

Table

TP324, TP4O1, TP412, TP424
TP324, TP4O1, TP412, TP424, TC3O1, TC312, TC324, TC4O1,

NP324, NP4O1, NP412, NP424, NC3O1, NC312, NC324, NC4O1,

NF324, NC3O1, TF3O1, TF412
NP424, NP4O1, TC312, TP4e1, NF312, NC412

21- -36 FS:~ Satisfactory Data Fusion Performances
.. ..... ... .. .. .. r.

Avg(%) Best(%) SN% SP 1%) PPv1%y NPV (%}
82.0±3.7 91.5 82.4±2.9 81.5±3.0 83.6±2.6 81.4±2.8
82.8±3.9 95.4 83.9±2.9 84.5±3.2 82.4±1.9 83.4±2.5
77.1±4.1 83.5 80.1±2.1 81.2±3.1 79.1±2.0 80.3±2.1
59.8±4.1 71.2 64.1±3.0 66.1±2.9 68.5±2.7 66.4±2.7
82.8±2.9 90.2 83.1±2.4 84.5±2.2 86.5±2.3 84.7±3.2

SMV Av () Bet(% N % S % PV(O) NV %

70.73.1 80.8 75.2±2.2 74.±. 624. 4329
79.8±2.8 96.3 78.3±3.~4 7743. 6.+3. 7.±.

69.53.3 74.2 73.5±3.6 70.±. 0028 7.±.

S63.03.3 73.8 68.1±21 652±. 6.±31 65±.
75.1±2.8 85.6 77.2±3.0 78.1±2.4 79.0±2.0 77.3±2.9

The FS5 combination list achieved the highest accuracy at 82.8±2.9%. The

lowest performance came from the FS4 combination list, which was comprised of the

lowest accuracy individual feature sets. These sets were all frontal electrodes, with the

exception of the C3 electrode.

The second test utilizing this 36FS combination makes use of the Satisfactory +

Marginal BEG dataset containing 164 overall subjects (79CN, 85AD), shown in Table

16. The feature set combinations used for this test were the same as in the satisfactory

only dataset cohort, listed previously. The performance metrics for the individual sets

shown in Table 22 with combination accuracies shown in Table 23.
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Table 22 -36 R..: Satisfactorv + Marginal Dataset Cohort Perfiwrmances

'GP5' 'GP' 'SP' 'PPV' 'NPV'
'TP3O1' 69.74±1.0% 74. 16% 80.34% 164.13% 66.48% 66.16% 64.66%
'TP312' 71.59±1.4% 76.98% 83.12% 71.33% 69.17% 71.19% 70.27%
'TP324' 64.23+0.6% 71.94% 76.58% 63.70% 65.41% 65.45% 64.03%
'TP4O1' 68.90+1.1% 73.43% 83.12% 65.54% 65.64% 65.99% 65.37%
'TP412' 64.76±0.7% 73.28% 79.41%o 66.23% 63.94% 65.68% 64.88%
'TP424' 64.63+0.9% 72.05% 79.58% 63.56% 66.22% 65.61% 64.55%
'TC301' 62.58+1.4% 69.59% 77.61% 64.09% 62.00% 63.95% 62.21%
'TC312' 64.54±2.4% 73.29% 82.30% 66.27% 64.17% 65.51% 64.95%
'TC324' 63.40+1.3% 71.96% 82.24% 63.52% 63.82% 64.14% 63.31%
'TC4O1' 62.35±0.9% 70.10% 76.63% 63.67% 61.31% 63.30% 62.35%
'TC412' 64.74+0.9% 71.56% 77.56% 65.05% 65.29% 66.14% 64.86%
'TC424' 64.21±0.5% 72.71% 80.39% 64.66% 63.42% 64.85% 63.53%
'TF3O1' 60.09±1.5% 68.37% 76.58% 61.48% 59.51% 60.72% 60.21%
'TF312' 61.91±1.2% 70.46% 78.54% 62.89% 62.41% 63.31% 62.29%
'TF324' 61.51±1.3% 69.75% 81.32% 61.57% 61.76% 62.02% 61.23%
'TF401' 58.78±1.2% 67.33% 75.82% 59.05% 58.99% 59.52% 58.58%
'TF412' 60.25+1.1% 70.08% 77.51% 61.57% 59.37% 61.22% 59.79%
'TF424' 62.21±1.1% 69.53% 78.54%o 63.38% 61.78% 63.53% 61.97%
'NP3O1' 61.54±0.7% 69.01% 73.91% 63.24% 60.75% 62.45% 61.50%
NP312' 64.30±1.8% 71.56% 80.28% 64.60% 64.66% 65.36% 64.28%
NP324' 63.41±1.6% 71.08% 79.47% 63.73% 63.57% 64.44% 63.34%
'NP401' 64.88±1.7% 71.57% 76.58% 65.82% 64.69% 65.50% 64.99%
NP412' 61.19+0.6% 68.97% 78.49% 61.82% 60.90% 61.67% 61.11%

'NP424' 65.74±1.3% 74.28% 81.37% 65.62% 66.61% 66.85% 65.31%
NC301' 59.74+0.8% 66.54% 77.56% 59.16% 60.55% 60.23% 59.47%

'NC312' 60.47±0.6% 68.07%o 76.69% 59.84% 61.46% 61.14% 60.21%
'NC324' 62.67±0.7% 71.59% 78.49% 62.86% 63.36% 63.20% 62.88%
'NC4O1' 60.54±1.8% 69.02% 75.76% 61.72% 60.20% 61.69% 60.22%
'NC412' 64.30±0.8% 73.07% 78.54% 66.16% 62.60% 65.03% 63.86%
'NC424' 62.03±1.8% 70.09% 78.49% 61.82% 63.25% 63.05% 62.24%
'NF3O1' 62.05±0.5% 69.73% 77.61% 61.99% 62.90% 62.95% 62.14%
'NF312' 64.92+2.3% 71.95% 78.540 63.57% 66.83% 65.91% 64.58%
'NF324' 59.26±0.5% 65.49% 72.00% 58.77% 59.93% 60.24% 58.70%
'NF4O1' 61.18+1.6% 68.43%o 73.86% 61.48% 61.29% 61.66% 60.99%
'NF412' 61.25±0.2%o 69.35%o 78.49% 61.47% 61.87% 61.80% 61.45%
NF424' 58.81±2.0% 66.03% 77. 67% 57.90% 60.52% 59.53% 58.74%

.4crortnrs . OG(P (overull group per/orma/Ic'), (GP5 (bes~t o/J 5 trial group perftoirmance)
GP (hestd group /)erOrnune), SN (sensitivitv). SP (speci/icitjv
PPV (positive predictive value), NPV (negative predictive value)

This test evaluated the same feature sets as the previous, this time utilizing the

larger cohort containing 164 subjects. Similar parallels can be drawn between overall

'OGP'
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electrode performances, with the parietal tending to be the highest and frontal electrodes

again representing the lower accuracies of the test. Target stimuli performance is on

average greater than that of novel stimuli accuracy, as with the previous test.

Table 23- 36 FS: Satisfactory + Marginal Data Fusion Performances

81.5±3.4 87.8 80.2±+3.2 81.1±2.2 79.4-+3.0 77.6-±2.1
80.2±2.9 95.2 79.4±3.6 78.9±3.9 81.5±2.7 80.0±3.0

79.7±3.5 87.8 81.3±2.9 79.9±4.0 81.0±3.0 80.3±2.8

SMV

69.3±3.3 76.5 66.4±3.9 69.4±4.1 62.0± 3.5 63.3±3.2
80.8±3.7 86.0 82.4±3.5 81.4±2.8 79.5±2.6 79.9±3.1

Avg (%) Best (%) SN (%) SP (%) PPV (%) NPV f%)
71.0±3.9 80.5 72.4±3.0 70.4±2.9 73.1±3.6 71.2±2.7
72.9±3.2 81.7 73.5±4.1 72.4±3.2 71.4±2.8 70.5+2.8
75.5±3.6 84.1 75.1±3.6 74.8±4.0 73.3±2.9 71.5±3.2
67.2±3.4 73.1 69.2±3.1 70.2±4.2 67.8±3.5 68.8±3.2
70.2±2.9 80.4 75.4±3.0 72.4±2.8 70.1±2.7 73.9±2.9

Both tests on the 36 feature set evaluation, using satisfactory only (4.1.1 d) as well

as satisfactory + marginal data (4.1.1c), achieved overall combination accuracies of over

80%. The highest overall performance for this feature set evaluation came to 82.8+2.9%

using the satisfactory only dataset on the FS5 combination. The next test focuses on

parietal only electrodes, detailed in section 4.1.1 c.
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4.l.lc PARIETAL ONLY ELECTRODE ANALYSIS (30 FEATURE SETS)

The next EEG test used both the satisfactory and satisfactory + marginal cohorts, to test a

30 FS. parietal electrode combination list. All bands between 0 11, and 4 HIZ were tested

on all the parietal electrodes (P3. P4, P7. P8, and PZ), with both novel and target tone

stimnuli.

Table 24 -30 FS: .Satisf/actori" Dataset Cohort Perfrmances

'GP5 'GP' 'SP' 'PPV' 'NPV'

'TP312' 72.75±2.1% 79.26% 87.04% 71.41% 68.53% 70.20% 70.19%
'TP324' 67.43±1.9%o 76.85%o 86.22% 63.83% 66.04% 66.05% 63.86%
'TP4O1' 67.84±1.8% 74.20% 80.61% 64.29% 65.95% 65.94% 64.40%
'TP412' 69.43±2.2% 76.24% 84.32% 67.68% 65.99% 67.45% 66.67%
'TP424' 67.57+1.7% 75.94% 81.54% 63.00% 67.13% 66.27% 64.22%
'TP701' 66.64±2.2% 75.16% 83.34% 64.51% 63.72% 64.66% 63.44%
'TP712' 67.89±2.2% 75.33% 81.54% 66.17% 64.17% 65.67% 64.87%
'TP724' 66.42±1.9% 74.81% 81.49% 62.97% 64.33% 64.48% 63.29%
'TP8O1' 64.95±2.0% 72.12% 82.36% 63.87% 60.79% 62.60% 62.11%
'TP812' 66.13±1.1% 74.54% 81.49% 63.23% 63.47% 63.81% 62.97%
'TP824' 68.03±1.5% 75.88%0 83.34% 63.30% 67.35% 66.50% 64.58%
'TPZO1' 69.53+1.6% 77.98% 86.22% 66.50% 67.57% 67.28% 67.13%
'TPZ12' 69.78±1.8% 77.19% 84.32% 67.68% 66.31% 67.65% 66.78%
'TPZ24' 66.32±1.8%o 74.80%o 84.37%o 61.96% 65.08% 64.53% 62.88%
'NP3O1' 63.74+2.0% 70.15% 77.84% 61.95% 60.12% 61.49% 60.50%
'NP312' 65.58±2.0% 72.71% 78.71% 62.08% 63.09% 63.59% 61.84%
'NP324' 66.30±2.1% 72.71% 78.71% 63.49% 64.36% 64.67% 63.32%
NP401' 67.92±1.7%~ 77.0l3%/ 84.32% 64.72% 65.44% 65.41% 65.18%
NP412' 64.62±1.7% 70.85% 77.73% 61.34% 62.24% 62.53% 61.23%
NP424' 68.30+1.5% 75.19%o 83.39%o 65.44% 66.33% 66.73% 64.99%
NP701' 64.86±1.9% 72.90% 79.63% 63.64% 60.80% 63.02% 61.58%

'NP712' 66.18+1.9% 75.35% 84.32% 63.45% 63.19% 63.70% 63.25%
'NP724' 66.65±2.0% 71.95% 80.51% 63.10% 65.10% 64.80% 63.67%
'NP8O1' 68.57+2.2% 78.28% 88.89% 66.51% 65.38% 66.23% 65.83%
'NP812' 66.47+2.1% 73.28% 79.63% 64.15% 63.69% 64.26% 63.74%
'NP824' 69.42±1.6% 77.00% 87.10% 64.53% 68.92% 67.70% 66.54%
'NPZO1' 66.03+2.8% 74.93% 84.26%o 62.99% 63.88% 64.47% 62.74%
'NPZ12' 67.00±2.4% 75.90% 82.47% 65.83% 63.52% 65.07% 64.40%
NPZ24' 67.61±2.0% 75.72% 82.41% j63.29% 65.77% 65.27% 64.05%

ler)/?~n)l: OGP (overall group /)er/orolale,. GP-5 (best of 5 trial group performance)
GP (hest group per/formane,,, SN (sensilivily), SP (specificity)
PPV (positive predictive value), NPV (negative predictive value)

'OGP'
'TP301' 1 67.92±1.9% 174.54% 6.6 34% 6.2 431 5 485.14% 66.86% 63.44% 65.72% 64.31%
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Table 24 lists all the diagnostic accuracies for each feature set in this test with the

satisfactory dataset. A trend that has been noticed in previous tests reappears in this

evaluation-target stimuli feature sets tend to perform higher than comparable novel

stimuli sets. ft is also clear that even the lowest performing individual feature set from

this test only drops to 63.74±2.0%, with the highest reaching 72.75±2.1%. The feature

set combinations used for this setup were as follows:

FS1: TP3O1, TP312, TP324, TP4O1, TP412, TP424
FS2: TP3O1, NP824, NP4O1, NP324, TP312, NP724, TP8O1
F53: TP3O1, TP312, TP324, NP301, NP312, NP324
FS4: TP812, TP724, TP7S1, TPZ24, TP424, NP412
FSS: TP3O1, NP824, TP312, NPZO1, TP4O1, NP4O1, 1P801, NP324

Table 25- 30 FS: Satisfactory Data Fusion Performances

81.4±2.9 82i.0±3.0
82.6±4.1 96.7 80.2±2.9 80.6±2.9 81.3±3.2 79.9±2.8
80.1±3.2 91.1 78.4±3.0 79.0±3.1 77.3±2.4 77.0±2.6
79.1±4.0 89.5 74.1±2.3 73.1±3.5 74.2±2.0 72.9±2.9
78.1±3.7 90.5 75.0±3.0 74.2±3.2 75.3±3.3 76.2±3.9

SMV Avg (%) Best (%) SN (%) SP) PPV () NPV (
81.3±2.9 90.5 79.8±2.9 77.4±2.7 78.0±2.5 80.2±3.1
79.9±3.6 84.7 76.2±3.4 74.3±2.9 77.1±3.2 76.8±3.4
77.1±4.2 90.5 75.2±3.1 74.6±3.2 75.4±2.9 73.8±3.6
77.1±3.7 91.5 74.3±2.6 75.6±3.2 76.4±3.1 75.0±2,8
74.2±4.2 91.3 72.4±2.7 73.1±2.9 72.1±3.0 70.0±2.9

The highest overall combination accuracy for this test was achieved with the sum

rule combination using the FS 1 combination list, achieving 85.7±3.1% as shown in Table

25. Another trend visible for all BEG tests thus far is that the sum rule combination gives

a higher overall accuracy than that of simple majority voting for the same combination

lists. The next test used the same feature sets with the satisfactory + marginal cohort

(164 total subjects, 79CN 85AD) for evaluation.
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Table 206 30 ES: Satisfactory ' Marginal Dataset Cohort Per/brmnances

'GP5' 'GP' SP' 'PPV' 'NPV'
'TP301' 69.70±1.5% 73.49% 78.31% 66.99% 66.83% 68.78% 65.05%

'TP312' 68.99±1.3% 73.20% 81.03% 66.67% 65.62% 68.04% 64.27%
'TP324' 67.75±0.9% 72.44%~ 82.01% 67.00% 62.84% 66.45% 63.62%
'TP4O1' 68.62±1.4% 73.16% 80.78% 66.35% 65.13% 67.54% 64.13%
'TP412' 67.44±0.6% 72.03% 79.54%o 65.76% 63.47% 66.16% 63.23%
'TP424' 66.65±1.1% 70.43% 77.80% 64.20% 63.70% 65.92% 62.16%
'TP7O1' 66.23±1.3% 70.66% 76.18% 65.30% 61.74% 65.24% 61.86%
'TP712' 67.53±0.7% 72.89% 78.03% 66.30% 63.11% 66.51% 63.08%
TP724' 65.97±1.0% 69.71% 76.18% 64.07% 62.00% 64.91% 61.42%
'TP8O1' 68.79±1.3% 73.60% 77.76%o 66.35% 65.25% 67.65% 64.10%

'TP812' 65.20±1.2% 69.09% 74.29% 63.14% 61.99% 64.52% 60.63%
'TP824' 67.58±1.2%o 71.74%o 78.160 64.77% 64.55% 66.49% 63.04%

'TPZO1' 68.24±1.0% 73.57% 79.88% 65.90% 65.13% 67.24% 64.15%
'TPZ12' 68.48±1.3% 74.09% 80.99% 67.11% 64.08% 67.37% 63.98%
'TPZ24' 66.26±0.7% 71.05% 75.33% 63.72% 63.82% 65.76% 61.65%

'NP3O1' 67.45+0.6% 73.10% 78.82% 64.65% 64.32% 66.47% 62.61%
'NP312' 68.80±1.7% 72.48% 79.48% 66.33% 65.53% 67.75% 64.29%
'NP324' 69.10+0.9% 72.76% 79.76% 65.88% 66.55% 68.46% 64.25%
NP4O1' 69.19±1.2% 72.42% 80.78% 67.97% 64.79% 68.13% 65.02%

'N P412' 67.16±1.1% 71.80% 77.99% 64.39% 64.24% 66.44% 62.42%

'N P424' 67.21±0.4% 72.05% 78.93% 64.49% 64.14% 66.21% 62.44%
'NP7O1' 67.13±1.0% 71.55% 80.42% 64.99% 63.43% 66.13% 62.52%
NP712' 67.58+1.1% 71.91% 78.90% 64.99% 64.56% 66.65% 63.03%

'NP724' 68.64±1.4% 71.75% 76.75% 66.75% 64.54% 67.25% 64.23%
NP801' 67.46±1.0% 71.93% 78.56% 64.48% 64.91% 66.57% 63.15%

'NP812' 67.47±1.6% 70.94% 78.61% 66.79% 62.47% 66.48% 62.93%
'NP824' 70.12±0.7% 73.74% 78.31% 66.02% 68.71% 69.59% 65.41%

'NPZO1' 68.37±0.9% 73.67% 81.40% 66.38% 64.51% 67.36% 63.82%
'NPZ12' 67.43±1.7% 72.09% 78.59% 65.03% 64.23% 66.51% 62.96%
NPZ24' 67.92±0.8% 71.66% 76.46% 65.26% 65.26% 67.29% 63.26%

Acr~onvms: OGP (overall >ioul per/fl1mallee), GP5 (bes.t o/ 5) hrial group pe~rformfance)
GP (hest group performance), SN (sensitivity), SP (specificity)
PPV (positive predictive value), NPV (negative predictive vaulue)

Table 26 details results similar to the previous test, with the majority of the

feature sets listed surpassing 660% diagnostic accuracy. While novel tone feature set

performances appear to surpass the comparable target stimuli sets, the accuracies are

close enough. w~ith a few~ within confidence intervals, to make this a statistically

insignificant difference. Table 27 shows the combination performances.
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Table 27- 30 FS: Satisfactory + Marginal Data Fusion Performances
SUM g() Best (%) SN (%) SP (%) PPV ) NPV

85.7±3.3 92.8 83.2±2.9 81.8±3.1 80.3±3.0 81.2±2.7
85.9±3.2 96.5 81.4±3.1 82.5±3.0 83.1±3.1 80.8±3.6
85.3±2.4 92.8 83.0±2.7 81.2±3.9 82.0±2.7 80.9±2.5
81.5±2.8 92.8 79.8±2.9 78.5±3.0 80.1±3.9 77.9±3.1
86.1±3.2 95.5 84.3±3.2 80.2±2.7 80.9±2.9 81.3±3.2

80.5
70.5±2.7 70.±3279.2±2.9J 85.4 j 74.3±3.5 73.6±2.7

78.6±2.9j 85.4 75.0±3.6 70.2±3.0
72.3±2.8 1 77.8 1 69.5±2.8

69.9±3.1 I0. 70.1±3.3 685±78.6±3.4 85.4 74.2±2.9 7 4;0.5±2.5

This test constituted the highest overall accuracy attained for any of the EEG

evaluations across all cohorts at 86.1±3.2% with the FS5 combination list as shown in

Table 27. The sum rule continued to outperform the simple majority voting method for

classifier combination in both tests.

4.1.ld RANDOM LABEL TESTING

The final EEG test focused on random label performance evaluations. Such performance

metrics are important in determining the algorithm's susceptibility to overfitting 12 on

training data. The ASG algorithm was tested with random labels assigned to the

satisfactory cohort, in addition to the full Cohort A dataset to further evaluate the

system's tolerance to overfitting. The Cohort A dataset contained 71 (34 AD, 37CN)

subjects with 19 electrodes.

The basic procedure for the random label testing began with a random assignment

of class labels for all subjects. ASG training was performed on the data, with five total

1Overfitting occurs in a classification system when the classifier is over-trained on data, essentially
learning noise. A random label test that produces performance around random chance is desirable as it
indicates little to no occurrence of overfitting.

115

73.5±3.2
73.2+3.1

701±. 70.0_3.b

75.1±3.7
72.8±2.5

1 705±2. 70.±32

69.±3.



www.manaraa.com

iterations per feature set, as opposed to the 10 in normal testing. This entire process was

repeated six times for different training and testing folds of the data, creating a 6-fold

cross validation setup. The individual feature set and combination performances for both

datasets used in this testing procedure are shown in the following tables, similar to the

presentation of previous cohorts and combination sets.

Table 28 Random Label Performances (Cohort A 71 subjects)

AVERAGED TRIALS
'FS' 0GW G5 OP SN SP PPV NPV

'TF812' 50.24% 56.05% 67.38% 52.50% 49.43% 50.01% 51.58%
'TFR212' 47.08% 52.02% 61.03% 47.56% 47-38% 46.14% 48.29%

'TPZO1' 50.14% 52.48% 59.84% 48.53% 52.77% 50.27% 50.94%
'NPZI2' 52.02% 57.57% 71.43% 50.22% 55.42% 52.83% 52,59%
'NT812' 53.22% 58.57% 68.57% 52.10% 54.35% 52.84% 53.93%
'NP224' 48.87% 52.24% 60.24% 49.66% 50.78% 49.72% 50.78%
'NCZ24' 49.54% 52.92% 60.95% 50.04% 49.68% 48.80% 50.96%
'NCZl2' 53.86% 591q97% 68.81% 53.67% 54.94% 54.37% 54,86%
'NOZ12' 49.81% 56.21% 65.63% 49.37% 51.17% 49.63% 50.11%
'TCZ24' 49.20% 53.00% 63.81% 46.51% 52.24% 49.15% 49.67%
'TPZ12' 47.76% 54.33% 62.14% 46.97% 49.68% 46.91% 49.41%
TP3IT' 48.62% 52.75% 61.43% 46.66% 5086% 48.44% 49.24%
'N FZ24' 48.25% 53.27% 64.29% 47.87% 49.19% 47.67% 49.33%
'TP324' 47.23% 53.48% 65.24% 4S.33% 50.44% 46.77% 49.1%
'TPZ24' 47.10% 50.73% 61.35% 46.19% 48.46% 46.50% 48.01%
'NPZOI' 50.72% 54.10% 67.62%© 48.17% 53.53% 49,09% 52460%

FS1: NCZ12, NC724, NPZ24, NTS12, NP724, TFP212, TPZO1, TF812, TP324
F52: NPZ24, NPZ24, NCZ24, NT812, NCZ12, TFP212
FS3: TFB12, TPZO1, NCZ12, NPZ24, NTS12, NPZ12, TFP212

Table 29-- Random Label Data Fusion Performances (Cohort A)

SUM Avg {) Bs (% M v Best (%)

48.91 59.03I 53.13161.711

The process was repeated for the satisfactory dataset. Table 30 shows the
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the combination performances using both the sum rule and simple majority voting, as

performed for the Cohort A random label tests.

Table 30 - Random Label Performances (Satisfactory Dataset - 107 subjects)

AVERAGED TRIALS
FS OGP GPS GP SN SP PPV NPV

'TP312' 50.87% 53.79% 61.04% 51.58% 49.85% 50.28% 51.20%
NFZ24' 51.35%/ 52.86% 66.71% 50.57% 51.30% 50.45% 51.42%
'TP324' 51.55% 55.63% 63.82% 51.35% 49.76% 50.35% 51.01%
'TPZ24' 51.45% 55.11% 68.67% 50.01% 51.87% 50.71% 51.41%
'N PZO1' 53.23% 56.44% 64.86% 50.41% 54.42% 51.69% 52.77%
'TF312' 51.95% 55.27% 60.12% 50.58% 52,23% 51,04%: 51.90%

'TFP212' 50.47% 54.02% 59.25% 46.88% 52.25% 49.49% 49.90%
'TPZ01' 52.20% 55.13% 63.00% 50.37% 52.25% 50.36% 51.81%/
'NPZ12' 50.22% 54.70% 65.73% 48.52% 50.47% 48.94% 49.90%
'NT812' 50.05% 52.88%s 61.04% 49-43% 49.25% 49.30% 48.98%
'NPZ24' 50.16% 53.57% 61.97% 48.44% 50.70% 48.76% 50.46%
'NCZ24' 52.39% 55.87% 65,78% 53,20% 50.57% 51.06% 52.43%
'NCZ12' 50.46% 54.54% 63.88% 50.63% 48.74% 48.94% 50.27%
'N0!Z12' 49.91% 52.63% 60.12% 48.08% 50.37% 48.30% 50.23%
'TCZ24' 50.97% 55.48% 63.00% 51.59% 50.21% 50.53% 51.35%
'TPZ12' 53.29% 57.20% 66.87% 50.43% 54.57% 52.45% 53.23%

FS1: NCZ12, NCZ24, NPZ24, NT812, NPZ24, TFP212, TPZO1, TP312, TP324
FS2: NPZ24, NPZ24, NCZ24, NT812, NCZ12, TFP212
FS3: TP312, TPZO1, NCZ12, NPZ24, NT812, NPZ12, TFP212

Table 31- Random Label Data Fusion Performances (Satisfactory Dataset)

SUM Avg (%) Best (%) SV Ag() Bs

49.16 58.12 47.5 53.471

It is clear from these results that the system is generally around random chance

performance, indicating little to no overfitting on both cohorts of BEG data. Both

individual and fusion performances for Cohort A and the satisfactory dataset are within

an acceptable range of random chance.
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4.1.2 MRI (VOLUMETRIC ANALYSIS)

The following performance figures are derived from the 136 subject MRI-only dataset,

normalized to inter-cranial volume for each patient. This dataset includes all available

volumetric MRI scans from AD and CN patients, some with multiple visits, constituting a

total of 79 AD and 57 CN subjects. Table 32 lists the basic statistics for this dataset.

Table 32 - MRI Cohort Statistics

Male
30

15

Female
49

75

MMSE Age
79 18.79 75.02
57 28.96 71.01

Totals 45 91 I 136

Data was normalized to inter-cranial volume for each patient to balance all

features for this cohort. A random subspace sampling method was employed to randomly

pick 18 features from the total available of 28 for the 16 total feature setsl3

Table 33 - MRI Cohort Feature Set Performances

FS OGP GP SN SP PPV NPV

1 83.76±2.2% 88.91% 94.36% 79.31% 76.23% 84.39% 71.21%

2 86.80+2.1% 90.63% 97.10% 82.52% 78.84% 86.87% 74.14%

3 85.14+1.9% 88.94% 96.17% 80.59% 77.83% 85.51% 72.61%

4 88.65+2.3% 92.76% 98.50% 84.31% 80.49% 88.39% 76.25%

5 86.36±2.3% 89.62% 95.12% 82.16% 78.11% 86.20% 73.81%
6 84.51+2.0% 88.31% 94.36% 80.32% 75.70% 84.65% 71.75%

7 86.75+2.1% 91.72% 98.91% 82.71% 78.66% 86.46% 74.45%

8 81.85+2.0% 87.95% 93.08% 76.87% 75.22% 83.04% 68.79%

9 86.48+2.5% 92.03% 99.49% 81.54% 80.04% 87.11% 74.01%
10 86.76±2.6% 92.32% 97.10% 82.38% 79.60% 87.06% 74.40%
11 84.28+2.7% 88.64% 96.64% 78.50% 77.76% 84.94% 71.22%

12 82.59±2.7% 87.27% 91.68% 78.25% 74.46% 83.02% 69.47%

13 86.42+2.2% 90.25% 95.47% 82.33% 77.99% 86.68% 73.62%

14 84.10±2.1% 88.93% 94.36% 79.24% 77.12% 84.79% 71.30%

15 83.79+2.4% 89.41% 97.63% 79.25% 76.36% 84.23% 71.13%
16 87.31+2.5% 91.44% 97.39% 82.08% 80.88% 87.59% 74.97%

AVG 85.35% 89.95% 96.09% 80.77% 77.83% 85.68% 72.70%

Acronymns: OGP (overall group performance), GP5 (best of.5 trial group performance)
GP (best group performance), SN (sensitivity), SP (specificity)
PPV (positive predictive value), NPV (negative predictive value)

3 This number was chosen to match the number of feature sets used in EEG analysis. such that the ASG
expert combination system would be similar across datasets to ensure fairness and equal voting.
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In Table 33, the average performance reached for individual feature set accuracy

was 85.35%. Three overall feature set combinations were created through a random

combination of the 16 individual feature sets. Additionally, all 16 available feature sets

were combined and analyzed.

FS1: 01, 04, 06, 02, 09, 10
FS2: 03, 11, 16, 15, 08, 05
FS3: 07, 14, 13, 12, 02, 04

Table 34 -16 FS: MRI Cohort Data Fusion Performances

93.2 87.2±2.3 84.4±2.9
85.3+2.9 84.4±2.1
82.7±3.1 82.5±3.0

89.1±3.1 94.0 87.6±3.0 84.9±2.5 82.2±3.0 85.0+3.3
89.5±3.0 94.2 87.5±3.1 85.0±2.7 83.1±3.1 85.1±3.0

SMV Avg (%) Best (%) SN(%) SP(%) PPV(%) NPV(%)

89.2+3.0 94.2 87.3±2.4 85.4±2.6 87.1±3.3 85.4+2.8
87.8±3.2 95.3 88.8±3.0 85.0±3.0 88.2±2.9 86.3±2.7
90.0±2.9 96.9 90.0±2.9 85.9±3.1 88.0+3.0 85.9±2.8
91.1±3.2 97.0 90.5±3.0 86.1±3.2 88.0±2.8 86.2±2.9

In Table 34, it is clear that the simple majority voting rule tended to perform the

best in combining the feature sets, with all 16 proving to achieve the highest overall

accuracy at 91.1+3.2%. Unlike EEG, simple majority voting achieved a slightly higher

diagnostic accuracy in comparison to the sum rule combination method.

Much like the EEG dataset tests performed, random label testing was done to

determine if overfitting was occurring with the MRI implementation of ASG. The

method of random subspace sampling was used to create individual feature sets that were

later combined for decision fusion. 16 feature sets were generated. Random class labels

were used for all subjects and the ASG algorithm was then trained and tested with this

information. Random feature set combinations were used to evaluate the ensemble. The

process taken for the random label testing was the same as done in EEG-randomization

119

88.6±3.4



www.manaraa.com

of class labels, five iterations of ASG, with this entire process repeated six times to form

a six fold cross-validation setup. Table 35 and Table 36 show the individual feature set

accuracy as well as the decision fusion accuracy.

Table 35- Random Label Testing (MRI-only Cohort - 136 subjects)

AVERAGED TRIALS
GPS GP

52.78% 55.46%
53,45% 59.42%

52.42% 60.11%
50.32% 60.23%

60.12% 62.54%
46,80% 58.46%

53.12% 60.24%
57.81% 60.71%
46.21% 56.13%
50.19% 57.21%
52.17% 56.23%
49.52% 52.13%
60.21% 63.44%
62,11% 65.79 %

48.56% 55.61%
55.60% 60.54%

SN SP
50.25% 52.46%
49.56% 53.14%

54.20% 48.44%
45.66% 42.55%
53.21% 51.44%
51.79% 53.26%
49.54% 58.97%
48066% 55.46%

43.25% 42.15%
50.24% 48.59%
53.66% 49.97%
58.46% 52.46%
51.24% 55.79%
56.87% 48.57%

57,77% 41.23%
50.11% 56.24%

AVG 50.96% 53.21% 59.02% 51.53% 50.67% 50.32% 51.17%

Table 36- Random Label Data Fusion Performances (MMJ-only cohort)

54.11 65.97

50.12 66.15
49.58 63.24
51.00 61.02

51.24 b3.12
53.15 67.45
50.33 62.10
54.10 66.79

Individual feature set accuracy averaged 50.96%, with fusion performances

generally between 49% and 54%, indicating little to no overfitting as these numbers fall

within the random chance range.
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FS
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

49.73%
51.24%
50.39%
48.55%
58.42%
42.98%
51.24%
55.10%
43.12%
48.55%
50.10%
46.70%
59.40%
60.10 %
45.28%
54.50%

PPV!
54.76%
48.24%
53.22%
58.64%
55.14%
52.23%
44.68%
49.68%
53.24%
53.16%
54.55%
54.14%
43.25%
47,54%
40.36%
42.36%

NPV
46.77%
46,57%
53.24%
55.71%
54.63%
50.19%
49.55%
49.68%
48.20%
47.54%
58,21%
43.06%
42.46%
55,.79%
57.45%
59.!60%
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4.1.3 PET (METABOLIC ANALYSIS)

The performance figures listed in the following tables come from the 80 subject

PET-only dataset. All available PET scans from AD and CN patients are used, again

with some patients having multiple scans, creating a total of 37 AD and 43 CN subjects.

Table 37 lists relevant subject demographics for this cohort.

Table 37 - PET Cohort Statistics

Male
9

14

Female
28

29

MMSE Age
37 18.98 74.15
43 28.88 70.79

Totals 23 57 80

Data was normalized to pons as well as by z-scoring. Both sets of data were used

in testing procedures to determine which normalization method provided the best overall

generalization performance with the ASG algorithm. Once again, a random subspace

sampling method was used to choose 36 features from the total 43 for diversity.

Table 38 - PET Cohort Feature Set Performances (pons)

'FS' 'OGP' 'GP5'

AVG 82.13% 90.47% 96.63% 81.07%

'SP 'PPV' 'NPV'

89.52% 84.97% 86.73%

Acronyms: OGP (overall group performance), GP5 (hest of5 trial group performance)

GP (best group performance), SN (sensitivity), SP (specificity)
PPV (positive predictive value). NPV (negative predictive value)

1 84.39+4.1% 92.20% 98.49% 82.92% 94.19% 89.51% 82.48%

2 81.20+3.9% 87.14% 96.59% 78.54% 86.58% 80.77% 84.79%

3 80.45+3.7% 86.93% 96.30% 76.32% 88.07% 80.86% 84.24%

4 83.90+4.1% 92.13% 98.81% 84.91% 92.54% 88.80% 89.93%

5 83.31±4.2% 91.82% 97.58% 84.15% 90.96% 88.91% 88.48%

6 82.50+4.0% 95.00% 97.56% 80.69% 91.08% 85.63% 88.32%

7 81.23+3.8% 89.50% 95.20% 80.57% 90.79% 84.66% 87.19%

8 84.61±3.9% 91.62% 98.20% 83.44% 93.83% 88.14% 90.16%

9 81.22±3.7% 87.41% 95.96% 76.67% 86.49% 79.60% 82.93%

10 80.51±4.1% 88.16% 96.64% 80.36% 89.53% 83.72% 86.53%

11 82.48+4.0% 91.73% 97.90% 81.84% 90.85% 86.19% 87.85%

12 82.71+4.1% 89.94% 95.40% 82.33% 91.41% 86.22% 88.60%

13 80.94+3.8% 87.65% 93.74% 80.33% 89.39% 84.85% 86.47%

14 79.97±3.9% 89.19% 94.20% 79.97% 84.13% 78.54% 84.81%

15 80.93+3.5% 90.59% 95.19% 79.63% 89.85% 85.32% 86.49%

16 83.76+4.0% 96.54% 98.18% 84.33% 82.48% 88.00% 89.24%
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As Table 38 illustrates, the average performance for individual feature sets was

82.13%. The confidence intervals for this dataset however show a larger range than that

of the MRI results. Three overall feature set combinations were created through a

random combination of the 16 individual feature sets. Additionally, all 16 available

feature sets were combined and analyzed.

FS1: 04, 07, 09, 11, 15, 16
FS2: 01, 05, 06, 10, 13, 14
FS3: 02, 03, 05, 08, 12, 16

Table 39 - 16 FS: PET Cohort Data Fusion Performances (pons)

SUM eAvg (% Best (% SN %) SP (%) PPV (%) NPV (%

86.3 3.9 91.3 83.23.9 8o0.13.0 85.4±3.5 86.13.9
88.93.1 93.6 85.3 4.1 82.4t4.0 84.03.7 83.93.6
88.2±3.7 93.9 86.7+2.9 85.1±3.9 81.2±3.6 82.9±3.5
88.53.8 94.0 86.4+2.8 85.213.8 81.03.4 83.0±3.2

SMV Avg Best ( SN (%) SP (% PPVNPV (%)

87.4+2.8 92.8 86.0±2.7 84.6±3.9 83.5±2.9 83.7±3.0

89.3±3.6 95.6 88.3±4.0 83.0±2.7 86.7±+2.7 87.0±3.1

90.0±4.0 96.8 88.6±3.7 81.9±3.8 85.0±3.1 84.4±2.9WA-I I90.0±3.5 96.6 89.0±3.8 82.0±3.5 84.9+3.2 84.2±3.0

The highest overall accuracy attained through pons normalization of the PET data

was 90.0±3.5% as shown in Table 39. Simple majority voting once again was the better

combination method, as was the case in the MRI dataset. Next, the same dataset was

normalized through z-scoring with respect to the normal control's data and evaluated

through the same process as before. The individual feature set runs are shown in Table

40 with data fusion combination accuracies listed in Table 41.
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Tahie 40 -PET Cohort Feature Set Performnances (z-scoring)

FS OGP

84.20% 89.92%

GP SN SP PPB

96.14% 81.92% 78.98% 86.83%

Acronyms: OGP (overall group /)er/ormnance). GPS (hest of .J trial group per.formance)
GP (hest group performnance), SN (sensitivitft, SP (speci ficitvi
PPV (positive predictive value), NPV (negative predictive value)

A comparable average accuracy to pons normalization w~as obtained through z-

scoring, averaging 84.20% as show~n in Table 40. Once again, three overall feature set

combinations w~ere created through a random combination of the 16 individual feature

sets. All 16 available feature sets were combined and analyzed.

ESi: 01, 04, 08, 10, 11, 16
FS2: 02, 06, 07, 09, 14, 15
FS3: 03, 05, 07, 08, 12, 13

Tahle 41 -16 [S: PET Cohort Data Fusion Perfiwrnances (:-scoring)

SUM

87.3±3.9 92.5 82.7+2.7 81.0±3.5 84.7±3.0 87.9+2.9
89.0±3.6 94.0 84.9±3.1 80.9±3.9 85.3±2.7 86.8±3.1

90.7±3.9 95.0 86.2±4.0 83.1+3.7 84.9"-2.8 85.7±3.6

90.9±3.6 95.0 86.3+2.7 83.5+2.9 85.0±3.0 86.0+3.2

SMV Avg (%) Best (%) SN (%) SP (%) PPV (%) NPV (%)IS88.6± 3.5

91.0±3.8

90.8±3.6

91.2±3.9

85.7±3.1

87.9±3.9

88. 1+3.6

88.0±3.5

85.7±4.0

86.7±3.6

86.2±3.7

86.9±3.1

84.6+2.9

88.8±3.0

87.9±3.4

88.5±3.1

85. 7±3. 1

87.9±3.5

88.0±3.6

87.9±3.7

1 85.29±2.2% 87.92% 96.77% ]80.46% 77.38% 85.54% 72.36%

2 84.22t2.3%o 86.57% 96.20% j83.67% 79.99% 88.02% 75.29%

3 87.26±2.9% 90.7800 98.10% 81.74% 78.98% 86.66% 73.76%

4 80.36±3.1% 84.26% 93.58% 85.46% 81.64% 89.54% 77.40%

5 82.24+2.8% 86.57% 93.45% 83.31% 79.26% 87.35% 74.96%

6 83.29±2.9%o 86.79%o 93.2500 81.47% 76.850% 85.80% 72.90%
7 80.48±3.1% 83.55% 90.28% 83.86% 79.81% 87.61%o 75.60%

8 80.58±4.0% 86.79%o 92.680% 78.02% 76.37% 84.19% 69.94%
9 83.47±4.3% 93.64%o 98.79%o 82.69% 81.19% 88.26% 75.16%

10 86.99±3.0% 94.22%o 99.85% 83.53% 80.75% 88.21% 75.55%~

11 85.48±3.6% 90.28%~ 97.25% 79.65% 78.91% 86.09% 72.37%

12 85.39±3.4%o 96.00% 98.99% 79.40% 75.61% 84.17% 70.62%

13 86.24+3.8% 95.20% 97.60% {83.48% 79.14% 87.83% 74.77%

14 84.22±3.9%o 90.00%o 95.69% 80.39% 78.27% 85.94%~ 72.45%

15 85.00+3.90% 92.10% 97.52% {80.40% 77.51% 85.38% 72.28%

16 86.70±3.8% 93.99% 98.30% 83.23% 82.03% 88.74% 76.12%

AVG 73.85%

95.8

96.0

Avg (%) Best (%) SN (%) SP (%) PPV (%) NPV (%)
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In Table 41, we can see that both the sum rule and simple majority voting perform

within each other's confidence intervals, each reaching around 91% diagnostic accuracy.

Through this analysis, it is shown that z-scoring showed slight improvement over pons

normalization, albeit by a statistically insignificant margin. Once again, random label

testing was performed to determine whether the system was overfitting on the PET data.

The procedure followed was done exactly as for EEG and MRI, which is again outlined

below for reference. Random subspace sampling was again used to create individual

feature sets for later combination, with 16 in total generated. Random class labels were

assigned for all subjects, and the ASG algorithm was trained and tested on this setup.

Random feature set combinations were then used to evaluate the ensemble performance.

Table 42 - Random Label Testing (PET-only Cohort- 83 subjects)

AVERAGED TRIALS

FS OGP GP5 G P SN SP PPV NPV
1 59.46% 62.54% 69.50% 49.63% 49.78% 59.66% 66.57%

2 58.45% 62.99% 66.37% 50.25% 59.22% 57.45% 60,24%
3 60.29% 63.45% 64.25% 59.46% 42.89% 60.12% 58.22%

4 61.25% 65.88% 70.52% 43.25% 56.12% 48.45% 62,14%
5 55.69% 63.25% 75.25% 46.25% 57.56% 60.00% 40.22%

6 63.57% 68.45% 69.22% 56.78% 49.00% 48.99% 46.55%
7 61.25% 63.56% 66.39% 56.00% 50.12% 50.00% 52.55%

8 68.77% 69.00% 75.47% 59.00% 50.00% 52.46% 53.87%
9 53.98% 60.28% 63.25% 63.10% 43.44% 44.50% 59.44%

10 56.78% 63.14% 66.34% 57.48% 49.55% 46.87% 47.54%
11 59.45% 60.22% 65.87% 56.25% 50.24% 60.25% 59.45%

12 52.15% 59.78% 63.24% 51.02% 56.24% 50.21% 44.44%
13 50.23% 56.45% 66.12% 50.28% 57.11% 52.32% 50.29%
14 56.21% 59.45% 66.75% 55.47% 60.20% 56.33% 50.77%
15 53.25% 59.90% 68.11% 48.69% 66.10% 57.24% 49.97%

16 50.29% 58.00% 63.25% 50.12% 59.55% 49.45% 55.55%
AVG 57.57% 62.27% 67.49% 53.31% 53.57% 53.39% 53.61%

Table 43 - Random Label Data Fusion Performances (PET-only cohort)
SUM Avg (%) Best (%) SMV Avg (%) Best 0%)

56.79 65.79

59.99 67.80

58.79 69.12
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The random label testing for PET data showed slight overfitting, with averages

reaching the upper 50 percentile. However, this case of overfitting is still slight, and

close to random chance.

4.1.4 BIOMARKER PERFORMANCE COMPARISONS

Figure 33 illustrates all the individual biomarker performances with confidence intervals

shown as horizontal lines projecting from the group mean. The EEC; tests all overlap

with each other's confidence intervals at one point. MRI and PET cohorts all overlap and

constitute the top end of accuracy in this system. setting these two biomarkers apart from

EEG. Only two EEG tests overlapped with the accuracies from PET and MRI, both of

which utilized the parietal only, 3OFS evaluation. The PET and MRI datasets outperform

three of the EEG tests completely, and two EEG tests overlap with PETI and MRI.

All Bioniarkers Diagnostic Accuracy Compansons

------- 91,2±3.9

PET Z-score Noinuhzation

Pons Noriplizatoti

6 ---- 0-- 'M M-
I(v Normnahzatbou

5 86.13.2

U) EEG Satislfactory +' Margimal (30 FS, Parietal)

- 4  
85.7±3:1

Satsfactory (30 F~S, Parnetal)
81.5±3.4.

Satisfactoy + Marginal(36 FS)
82 8±2 9

2 --------

Satisfactory (36 FS)

78 80 82 84 86 88 90 92 94 96
Diagnostic Accuracy (Qo)

Figure 33 Individual bilomarker performiances with confidence intervals
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4.2 ENSEMBLE SYSTEM COMBINATION PERFORMANCES

T he following section outlines the datasets used as well as the diagnostic accuracies of

the different combinations of biomarker experts. Two methods were used to fuse the

decisions of each biomarker expert-one employing the usual classifier combination

schema (sum rule. simple majority voting weighted majority voting) and the other

utilizing a modified stacked generalization approach. where each expert from each

biomarker is used to train another meta-classifier, acting as a final decision expert. This

is done between the overall six-fold CV. in order to evaluate on patients the system has

not yet seen. A diagram of this process (Figure 34) illustrates the system flow.

Biomarker Experts for AD Diagnostic Evaluation

Data Acquisition
(FDG-PET Scan)

Pre-processing

Artifact removal,
Normalization

C Pre-processing
X Data Acquisition
W (Oddbal Paradigm) Noise/artifact removal
Q. signal baselining

r Pre-processing
x Data Acquisition
_ (T2 MRI Scar) Volumetric Analysis,

Normalization

Feature Extraction

Random Subspace
Sampling

r ci

ASG
Experts

ASG Based
Decision
Fusion

1 11 MetaClassifier
Feature Extraction 1 - 21

Discrete Wavelet ASG
Transform Experts

cr

Feature Extraction C2 Final

Randon Subspace A s Decision
Sampling Experts

Figure 34 M eta-class /icr as decision firsion for hiomarker expert combination

This implementation attempted to learn firom the expert A.SG outputs, creating a layer of
stacked generalization for decision fusion on the final ensemble svystem 's final outpurt.

Each dataset presented shows statistics across all classes for informational

purposes, however only AD and CN were compared for this study. For each combination
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test. three overall methods were tested: sum rule combination, simple majority voting.

weighted majority voting (with weights hased on prior performances obtained in

individual biomarker evaluation runs), and the use of the stacked generalization meta-

classifier for learning and decision making (denoted by SG' in the results tables).

An overall average is shown of the combination of several cross-validation runs to

ensure the best representation of generalization performance given with a 95%

confidence interval. The best overall fold is also presented. along with diagnostic

accuracy performance metrics. Furthermore, the 16 feature sets chosen for EEG were

selected for diversity 4 and best overall generalization performance. determined through

the previous individual LEG biomarker evaluation runs. In general, parietal electrodes

tended to perform the best overall individually, and several are chosen because of this.

The feature sets used for combination were:

Target: TP301, TP312, TP324, TP4e1, TPZO1, TPZ12, TPZ24, TC412
Novel: NP324, NP401, NP424, NPZ01, NPZ24, NP801, NC412, NF312

4.2.1 EEG+MRI

Tahle 44 lists the basic cohort statistics (average age and MMSE scores. as well as the

corresponding standard deviation) for EEG+MRI combination. All diagnostic classes are

shown for reference: however, only CN versus AD diagnostic accuracy was tested.

Tahe 44 EEG+MRI Cohort Sttisics

I CN AD I MCI PD
45 50 64 89

4s I)iersitx x\ith respect to the number of unique features bet\ween each teature set.
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Table 45 - EEG(+ RI C'ombination Performance

Avg (%) Best (%) SN (%) SP (%) PPV (%) NPV (%)
91.3+3.1 95.8 88.6+3.0 90.1+2.9 92.7+2.7 91.6+3.0

92.8+3.0 96.4 89.7±3.0 91.0±3.0 92.9±2.8 90.8±3.2

93.5+3.2 97.0 92.7±2.7 93.1+3.1 94.0±3.0 93.7±2.9

94.7+3.1 97.4 93.5±2.5 93.6±3.2 93.7±3.1 94.0±3.0

In Table 45, it is clear that the stacked generalization (SG) based method for

decision fusion excels however the weighted majority voting method is statistically

comparable as both performances are within each other's confidence intervals.

4.2.2 EEG+PET

Again. Table 46 lists basic cohort statistics, in this case for the EEG+PET only

combination cohort. Table 47 details the overall accuracies as well as the various

diagnostic performance metrics for each test.

Table 46 - EEG+PET ('ohori Statistics

I CN AD I MCI PD PDD

33 37 33 42 6

70.94 73.84 68.88 69.98 72.83

9.02 8.43 8.21 6.51 5.08
29.00 19.86 25.03 27.26 22.20
1.15 5.65 3.70 3.64 6.98

In Table 47. a similar trend is noted from the EEG+MRI cohort. Once again, the

SG method outperforms all other decision-fusion techniques, outperforming WMV by a

statistically small margin with the sum rule performing the poorest of all.

Table 47 - EEG+PET ('ombination Performance

Avg (%) Best (%) SN (%) SP (%) PPV (%) NPV (%)

89.7±3.0 93.1 87.0±2.9 86.4+2.7 86.0±3.0 87.3±3.1

90.0+2.9 93.6 88.5±2.9 87.0±3.0 89.3±3.2 85.4±3.0

91.2±3.2 94.0 89.6±2.7 90.0±3.1 90.5±3.1 87.9±2.8

92.3±2.7 94.8 90.3±3.0 91.0±2.8 92.4±3.0 93.0±2.7
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4.2.3 MRI+PET

This combination dealt only with the MRI+PET combination cohort, with relevant

statistics listed in Table 48. This cohort yielded the second most available subjects, with

only EEG+MRI containing more. Overall accuracies and diagnostic performance metrics

are shown in Table 48.

Tahle 48 - MRI-ET Cohori Statistics

CN AD MCI PD PDD

69.73 74.34 70.14 69.22 74.25
9.61 8.40 9.03 5.90 3.30

28.51 19.15 24.73 27.24 23.00
1.88 6.27 3.93 3.72 9.54

In Table 49, it can be seen that all performances across each fusion method

remain approximately the same. with any small differences statistically insignificant due

to confidence intervals. It is interesting to see this, as all previous combinations clearly

showed a trend with sum rule performing lowest and SG attaining the highest diagnostic

accuracy. However. this is not the case with the MRI+PET cohort.

Table 49 - MRI+PET C'ornhinanuon Perfornance

6 Avg (%) Best (%) SN (%) SP (%) PPV (%) NPV (%)

9±.93.0 93.8 88.5±3.0 87.2±2.9 880±229 869±f3.1

6±.62.9 93.7 89.4±3.1 90.0±3.5 87.4±2.6 87.0±3.2

90.4±2.7 93.5 90.0±2.7 89.7±3.0 86.4±2.7 88.1±3.0

4.2.4 EEG+MRI+PET

In this final test. the combination of all three biomarkers used in this study was evaluated.

The overall cohort yielded 32 normal control and 33 AD-probable subjects. Basic

information for the cohort is shown in Table 50.
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Tablec 50 -LEG+-MRI+-PET Cohort Sialislics

ICN AD 'MCI PD F

17 32 3 29 '37

Once again. the pattern show\n in the FEG+MRI and EEG+PET tests appears in

this analysis, as shown in Table 51I. It is clear that both SG and WMV tend to perform

the best in this study for decision fuision. SG performed the highest overall. wxith WMV

within the confidence interval range to make it just as viable as the best decision method

for use in the ASG-based expert combination system.

Tab/c .5/ EC AIl?! PET ( ombination Per/brnianccs
Best (%) I SN (%) I SP (%) I PPV (%) NPV (%)

7 94. 98'-2.8 I 95.4 90.4±2.7 88.9-2.9 87.6±3.0 87.9±3.19293.0 I 95.8 91.2±3.1 91.5±2.8 88.9±3.1 89.0±2.7

94929 96.2 92.2+3.0 92.4±2.7 90.0+2.8 89.9+2.9

90±3.1 I 97.2 94.5±3.0 94.4±2.9 92.7±2.7 91.3±3.2

Figure 35 illustrates the overall fusion accuracies for the various combinations.

along with confidence intervals for a visual representation of system performance.

Biomarker Fusion Accuracies

88

Figure 35

EEG-+MRI+rPFT

;MRI+PET:
92: 3f2 7

EE67-PET
94.7±3.

-----------L----------- --0 294969

Diagnostic Accuracy (%/)

Bionarkr flsion per/ornlances rith confidence intcrvals
130

IAvg (%)I
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In Figure 35, it is clear that all four tests have overlapping confidence intervals.

with the EEG+MRI and EEG+lMRI+lPET sharing the greatest overlap. It is clear from

these experiments that EEG tends to hold complementary information wshen combined

with either MRI or PETF. PET data on the other hand appears to do little when combined

with other data types. possibly indicating less complementary information. For

comparative purposes. all tests for both individual and data fusion evaluations are

illustrated in Figure 36 with confidence intervals.

All Tests. Diagnostic Accuracy Comparisons

* E
:909±3 0

MRI+4PET..
* 92;3±2 7

* EE( --PET

* 91.2±3.9

Z-scbre Normaliztion
900i3 5

Pons Northalizatnon
91 1±3.2

* ICV Normalizt on

*8 16±3 2

E EG Satisfaqtr 711,"-arginal (30 FSParietal)

Satisfactory (30 IFS, Panetal)
81 5±314

Satisfactiiy+ Margidal (36 FS, NN) NN-i Neuronexix
.02 8±2 9 :Electrode Tests

Satnsfactory (36 ES, XN)

Satisfactory (1$ FS, lst vtiss)

78 803 82 84 86 88 90 92

95 0±3 1
0

EG+MRI+PET

DATA
FUSION

94.7±3.1

E.EG--MRI

PET'

--MR1

94 %6 98
Diagnostic Accuracy (0.-)

Figure 36 -Individual and data, fusion performances with confidence intervals
EEG+MRI and EEG+-MRI+rPET are the only two data fusion methods that show a
statistically' .significant improvement over parietal -only electrode hased EEG evaluations.
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4.3 DISEASE SEVERITY ANALYSIS

A simple disease severity analysis was performed to determine the efficacy of the method

described in this study in separating mild and severe AD from normal control patients.

EEG+MRItPET data were combined, as this provided the highest overall accuracy in

determining patient diagnosis. Individual biomarker performances were also evaluated

for comparative use and completeness.

The basic metric used for AD severity distinction in subjects was the use of their

respective MMSE scores as a cutoff point. Three cutoffs were used (20. 23, and 26)15

where AD patients with a score above the cutoff were considered mild/moderate and all

others below this value as severe. Modifications were made to the ASG and expert

combination algorithm to allow for classification of three classes.

Table 52 shows the subject count breakdown for each cutoff level for the

EEG+MRI+PET combination dataset. These subjects were also used in individual

biomarker analysis, as opposed to the entire available subject set so a fair comparison

could be made between biomarkers and the final combination accuracy. EEC feature set

combinations were chosen identical to those used in the combination analysis from the

previous section.

Table 52 AD Severity Aalvisis Subject Counts

MMSE Cutoff I CN Mild AD I Severe AD

22 11
32 12 21

7 26

s Recall: MMS scores are a subjective scoring that rates a subject's cognitive ability. A perfect score is a
30. Scores lowser than 26-28 gencrally indicate cognitive impairment. caused hx diseases such as AD.
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Three combination methods were tested for this setup: simple majority voting

(SMV), weighted majority voting (WMV), as well as the stacked generalization based

meta-classifier for decision making (SG).

Note that the SG decision analysis was only performed for the combination set, as

the algorithm was not adapted to handle individual biomarker expert training. The

performances shown in Table 53 are averaged from multiple cross validation runs, and

represent the best estimate in system generalization performance for severity analysis.

Table 53 -AD Severity Analysis Performance

Cutoff: 20 EEG MRI PET EEG+MRI+PET

57.9±2.1 53.0±2.7 56.3±2.9 65.1±2.7

60.3±3.2 56.9±3.1 56.4±2.4 66.7±3.0
l. - -- 68.2±2.9

Cutoff:23 EEG MRi PET EEG+MRI+PET

63.4±2.9 60.5±£2.7 60.812.8 66.1±3.0

66.7±2.7 63.1±260 62.9±3.0 69.4±2.7

! M 60.2±_2.7 58.4±3.0 56.9±3.2 62.5±2.6
59.4 2.5 57.0±3.1 56.7±2.6 63.4±_3.2

WW -- -- -- 67.8±3.0
While performances are not as high as would be generally desired, they do exceed

random chance by approximately double. In all cases of cutoff values, it is clear that the

combination of all three available biomarkers yielded the highest diagnostic accuracy.

Detailed discussion and interpretation of all results in this section, as well as preceding

results, are provided in chapter 5 along with a summary of accomplishments in addition

to recommendations for future work that can be performed on the data used for this study.
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CHAPTER V

CONCLUSIONS

The main goal of this project was to expand and improve upon previous efforts in the

development of an automated classification system for the diagnosis of

neurodegenerative diseases. Specifically, this study focused on the diagnosis of AD-

probable patients only. Previous studies relied upon primarily EEG data, with the

exception of the most recent which implemented an ensemble system capable of fusing

EEG and MRI data to aid in greater diagnostic accuracy. The current study incorporated

the use of three biomarkers overall: EEG, MRI, and PET, which have complementary

information for this diagnosis method. The use of these biomarkers as individual sources

for classification information was evaluated, along with all possible combinations.

Additionally, severity analysis for AD was performed, based on various cutoff values

determined through patient MMSE scores. A decision-based data fusion approach was

used by implementing variations on the augmented stacked generalization algorithm for

ensemble system analysis.

5.1 SUMMARY OF ACCOMPLISHMENTS

Prior to the last study completed in this project, all previous research focused on the most

optimal feature sets to diagnose AD using ERPs from EEG data only. Much of the prior

work dealt with exhaustive searches for optimal electrode, stimuli, and frequency band

combinations (from wavelet decomposition of the EEG signal) that yielded the highest
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overall diagnostic accuracy. Additionally, work was introduced in the development and

improvement of various ensemble systems to maximize the information available from

EEG to realize even higher accuracy. The most recent work prior to this study added a

heterogeneous data source to provide complementary information to aid in classification.

The inclusion of MRI data proved to be highly beneficial to this process; used in

conjunction with matching EEG data, classifications rates entered the low to mid 90

percentile, exceeding any single ERP analysis from previous studies.

As previous studies sought optimal electrode and frequency band combinations,

along with the first attempt at data fusion with an additional heterogeneous data source,

this present study built upon this foundation by expanding upon these optimal

combinations, along with the addition of a third data source. The use of PET data

allowed a third data source for classification, creating three expert biomarkers that could

be used for automated diagnosis of AD. Specifically, the EEG expert was modified to

allow for even greater flexibility in multi-input features, permitting a wide array of

frequency band, electrode, and stimulus combinations to be created.

In general, it has been shown that the parietal lobe electrodes tend to provide the

best information regarding AD diagnosis, as feature sets containing these electrodes

consistently performed higher. The best overall combination in an EEG-only biomarker

expert yielded a performance of 86.1±3.2%. The feature sets used in this combination

were TP301, NP824, TP312, NPZ01, TP401, NP401, TP801, and NP324. This

performance not only surpasses the accuracies reached in previous studies, but far

outperforms the diagnostic accuracy rate of community clinics, generally accepted at

75% [8].
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The MRI-only expert was implemented in a different manner than the previous

study. As opposed to using a multi-tiered leave one out scenario for training, testing, and

validation, a modified augmented stacked generalization algorithm was implemented,

similar to that of the EEG expert. Random subspace sampling was used to choose 18

features from the available 28 in the MRI data, and 16 overall feature sets were created in

this manner (to match the number of feature sets used in the EEG expert). The highest

overall accuracy for the MRI expert was 91.1±3.2%, which exceeded the previous study

highest MRI accuracy by a statistically irrelevant amount of percentage points. The

previous study MRI accuracy peaked at 88.1±2.3%. The confidence interval of this

current study's performance along with the previous overlaps; therefore a statistically

significant performance increase is not realizable.

PET data from the CERND cohort was not previously analyzed; therefore, the

results presented in this study are novel and have no previous work to compare to. A

similar feature extraction method implemented for the MRI data was utilized for the PET

data, in which a random subspace sampling technique chose 36 of the available 43

features to aid in feature set diversity. Again, 16 feature sets were created to match that

of the EEG and MRI experts for later overall ensemble combination. The highest overall

accuracy for this expert peaked at 91.2±3.9% with z-scoring used as the normalization

method. This diagnostic accuracy puts this data source on par with the performance of

the MRI expert.

It should be noted that random label testing was performed for all biomarker

experts, in order to determine ifoverfitting was occurring. In all cases, overfitting did not

appear to be an issue. All possible combination methods of EEG, MRI, and PET data
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were then tested for this study. The highest overall performance was obtained through a

combination of all three experts, using a meta-classifier as the final decision block

reaching an accuracy of 95.0±3.1%. This performance metric exceeded all accuracies

from previous studies, with the closest being 94.0±2.0, where EEG and MRI data was

fused and implemented in a two-tiered leave one out algorithm [112]. The EEG+MRI

combination performance for this study reached 94.7±3.1% with the meta-classifier from

the stacked generalization implementation (SG) of decision used. This exceeded the

previous work by a statistically insignificant margin. EEG+PET diagnostic accuracy

reached a maximum of 92.3+2.7% where SG was the decision fusion method used. The

MRI+PET attaining a maximum performance of 90.9±3.0% with simple majority voting

(SMV) as the decision fusion block; however, it should be noted that all decision fusion

methods (sum rule, SMV, WMV, and SG) were all within 0.5 percentage points of each

other, falling well within each performance metric's confidence intervals.

Finally, a severity analysis was performed. The method used for the separating of

AD groups into severe and mild was the same used in the previous work. MMSE scores

were used to develop cutoff points to place subjects into different AD severity groups.

This analysis was used to determine the severity of the disease in a given patient, not

merely whether the patient indeed has the disease or not. The overall cohort contained

the same amount of patients used for the three-biomarker evaluation set (32CN, 33AD).

The three MMSE cutoffs used were 20, 23, and 26. This created the cohort shown in

Table 52. Each biomarker was evaluated individually in this analysis, as well as a

combination of all three for decision fusion. At an MMSE cutoff of 20, the best overall

performance was reached in EEG+MRI+PET fusion, with the SG method for decision
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fusion attaining 68.2±2.9%. For the cutoffs of 23 and 26, the maximum performance was

again attained in the combination of all three with the SG for decision fusion, reaching

70.9±3.0% and 67.8±3.0% respectively. Overall we can note generally poor diagnostic

performance from the system for the disease severity analysis. When the cutoff number

was increased, the overall combination performance increased. This phenomenon can be

explained in several ways. To begin with, as the cutoff increased, the severe AD group

grew in number, which is to say that there were more patients that had a greater overall

difference from normal patients. It may also be feasible that mild AD patients share more

biological similarities across all biomarkers used at lower cutoff numbers, creating a

harder problem for classification between mild AD and normal controls. Thus, this third

class may have merely been contributing to overall performance loss, until the size of the

class was reduced to a "small enough" number. The more likely explanation is that the

severe and mild AD groups are hard to distinguish. Additionally, the use of the MMSE

score alone as a cutoff for severity separation in AD patients may not paint a complete

picture of AD progression in a given subject [115]. Supplementary information from

other sources such as CDR and DRS data as well as greater analysis of other

psychometrics could yield better class separation boundaries for automated analysis.

Regardless, it is clear that as the MMSE cutoff increases, the performance of the severity

analysis system increases [112].
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5.2 POSSIBLE SOURCES OF ERROR

The preprocessing techniques used in this study generally do not effect the data in a

negative manner. Therefore, the primary sources of error for all data used in this study

can be primarily attributed to the data acquisition. EEG data in particular is susceptible

to noise, mostly because the voltages from brain activity occur in the micro-volts range

( V), and are easily overshadowed by muscular electrical activity and external noise

sources such as power-line and electromagnetic wave interference. Various EEG systems

attempt to combat such errors by placing the amplifiers on the scalp electrode, as opposed

to at the base unit. This method varies between each system, and any assumptions

regarding the amplification technique cannot be made. Additionally, some AD patients

of a low cognitive ability were not able to properly execute the auditory oddball

paradigm. This meant their P300 responses to target and novel tones may have been

greatly reduced, if apparent at all. We attempted to reduce such error by visually

inspecting all AD and CN ERPs for all subjects used in this study, excluding those

instances with a weak or non-existent P300.

However, the greatest source of error is also the largest assumption made in this

study. All class labels for all patients in this study are determined from the decision of an

expert neurologist, whom generally has a diagnostic accuracy of approximately 90% [8].

This diagnosis is accepted as the correct class information for all subjects, where in some

cases this may not be correct. Some patients had inconclusive or contradictory class

labels, and were subsequently excluded from all data sources for this study, as a

conclusive class could not be determined with the information provided. Clearly, if any

class labels were incorrect it would adversely effect the ability of our classification
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algorithms to learn the data. While post-mortem analysis through autopsy is the only

currently available method to accurately determine patient class, it cannot be immediately

applied to our current datasets without further investigation to the stage and progression

of the disease at time of data collection as well as at time of death. In the future, such

correct diagnosis information could be applied to this dataset, with careful consideration

placed in the progression of the diseases over time in comparison to the data collection

date.

Finally, a contributing factor for error is that the data collected for this study, be it

EEG, MRI, or PET, is a combination from various test sites and processing locales.

Since the MRI and PET data was provided in a format processed with proprietary

software, only specific features could be used. The raw EEG data was collected with an

EEG technician on hand; however, expert EEG analysis was not performed and the data

provided was merely sent through our automated filtering, baselining, and ratification

rejection process. Error and poor EEG signals could be avoided with the use of

professional EEG analysis software, or an expert electroencephalographer.
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5.3 RECCOMMENDATIONS FOR FUTURE WORK

The CERND study has now reached the end of the data acquisition phase. With this

important milestone, the available data across all biomarkers and tests constitutes the

final patient cohort. This data is part of a vast project, and will be made available to

researchers worldwide for further analysis in the hopes of developing methodology or

drawing parallels for detection of neurodegenerative diseases. While the work presented

in this study focused solely on the differentiation between AD and normal controls, the

algorithms described herein can be adapted for multi-class problems with ease. The

investigation into Parkinson's disease (with and without dementia) as well as mild

cognitive impairment should be explored from this cohort.

Furthermore, the focus of this study as well as previous work dealt solely with

biological markers for diseases-a large wealth of statistical information (psychometrics

for example) is available. The inclusion of such statistical analysis along with automated

biomarker based classification algorithms could yield even greater results. Severity

analysis is also desirable; perhaps a system that could not only determine patient

classification, but the stage of the disease would be of great use. Regardless of the

approaches used in future work, there is a plethora of information readily available and

should be used to its fullest extent. An extensive button press analysis of all subjects in

the EEG dataset was conducted earlier in this study; however, this data was never fully

utilized and could be considered as an additional exclusion criteria. Additionally, the

removal of first-degree relatives to AD-probable patients in the control subject base

should be explored. Previous studies have shown marked differences between those with

and without first degree relation to AD subjects and should be considered.
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APPENDICES

APPENDIX A: EEG GRAND AVERAGES

Standard Target
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Figure 37 -Cohort A: Three-electrode ERP grand averages

All three stimuli grand averages across all available sub/ects in Cohort A (7] total sub/eet
averages, 3-/AD and 37('N) are shown for the ['2 (7, and PZ electrodes. It can be seen
that AD patients appear to have enlarged P200s, similar to Cohort B (following page) which
have been shown to be indicative of additional effort and use of cognitive resources.
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Figure 38 -CERND (Cohort B): Three-electrode ERP grand averages

All three stimuli grund average across available subjects the CERND studi (Cohort B, 197
total subject averages, IO3AD and 94CN) are shown for the FZ, CZ, and PZ electrodes. It
can he seen that AD patients appear to have enlarged P200s, similar to Cohort A which
have been shown to he indicative of additional effort and use of cognitive resources.
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APPENDIX B: RAW BUTTON PRESS ACCURACIES

Subject accuracies for all classes in pressing a hardware button during EEG recordings

when presented with a target tone is shown in this section. Hardware failure of the button

press mechanism in the actual setup occurred for a small percentage of subject trials:

therefore, these trials in question were ignored for this analysis. Further explanation of

omitted trials is provided in section B.6.

B.J AD PROBABLE SUBJECTS

Pain CT
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3862

3867

3875

3930

3981

4015

4055

4182

4222

4282

4392

4474

4504

4528

4591

4593

100.00

99.99

99.98

99.91

99.80

99.96

99.98

99.99

100.00

99.97

100.00

99.97

99.99

99.99

100.00

100.00

99.99

100.00

99.99

99.99

99.99

99.99

100.00

100.00

99.99

99.99

100.00

99.99

100.00

99.95

99.91

99.87

99.98

99.93

99.99

100.00

99.98

99.99

99.96

99.97

99.99

99.99

99.99

100.00

100.00

99.98

99.99

100.00

99.97

100.00

100.00

99.99

100.00

100.00

91.38
97.13

87.36

12.93
33.99

5.91
48.77
99.43

93.68
2.30

99.43
4.83

91.38
95.98
98.85
91.38

97.70

0.00
90.23
97.13

83.33
80.46
97.13

98.85
96.55
98.03
98.03

97.12

99.04

95.76

70.92

77.89

68.62

82.89

99.80

97.89

67.42

99.81

68.25

97.11

98.65

99.61

97.12

99.23

66.67

96.73

99.03

94.44

93.47

99.04

99.62

98.84

99.34

99.34

1

1

1

0

0

0

0

1

1

1

1

1

1

1

1

0
1

1

1

1

1

1

1

1

1



www.manaraa.com

4686 ad 1 100.00 99.99 95.40 98.46 344 1

4689 ad 1 99.99 99.98 72.99 90.99 284 0

4726 ad 1 100.00 100.00 0.00 66.67 0 0

4747 ad 1 99.93 99.88 71.26 90.36 375 0

4748 ad 1 99.81 99.85 11.49 70.39 520 0

4765 ad 1 99.97 99.96 63.79 87.91 301 0

4777 ad 1 99.89 99.81 24.14 74.61 360 0

4800 ad 1 99.98 99.97 81.03 93.66 340 1

4811 ad 1 99.97 99.98 73.56 91.17 315 0

0

4857 ad 1 100.00 100.00 98.85 99.62 357 1

4903 ad 1 100.00 99.99 98.85 99.61 357 1

4908 ad 1 99.72 99.76 67.24 88.91 486

4925 ad 1 99.99 99.97 93.10 97.69 353 1

4971 ad 1 99.90 99.92 60.34 86.72 413 0

4975 ad 1 99.98 99.95 32.18 77.37 144 0

4980 ad 1 99.90 99.94 22.41 74.08 243 0

5006 ad 1 99.98 99.98 84.48 94.82 327 1

5007 ad 1 99.99 99.42 59.77 86.39 409

5013 ad 1 100.00 100.00 94.58 98.19 396 1

5057 ad 1 99.99 99.97 28.72 76.23 282 0

5070 ad 1 99.95 99.72 8.62 69.43 221 0

5089 ad 1 99.99 99.88 88.51 96.12 367 1

5105 ad 1 100.00 100.00 0.00 66.67 0 I

5123 ad 1 99.95 99.95 94.83 98.24 359 1

5158 ad 1 99.88 99.75 36.21 78.61 398 i

5239 ad 1 99.98 100.00 95.98 98.65 366 1

5247 ad 1 99.92 99.91 74.14 91.32 213

5299 ad 1 99.99 99.95 93.10 97.68 370 1

5313 ad 1 99.96 99.92 69.54 89.81 336

5335 ad 1 100.00 100.00 97.70 99.23 353 1

5410 ad 1 99.97 99.97 80.46 93.47 339 1

5458 ad 1 100.00 100.00 96.55 98.85 352 1

5472 ad 1 99.97 99.94 59.20 86.37 271 0

5501 ad 1 100.00 100.00 95.40 98.47 340 1

5511 ad 1 100.00 100.00 98.85 99.62 360 1

5547 ad 1 99.99 99.99 92.12 97.36 396 1

5571 ad 1 99.89 99.87 23.56 74.44 301

5585 ad 1 99.98 99.99 94.25 98.07 353 1

5630 ad 1 99.95 99.85 45.98 81.93 272
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5707 ad 1 99.99 99.98 91.95 97.31 340 1

5797 ad 1 99.99 100.00 98.28 99.42 356 1

5895 ad 1 100.00 100.00 96.55 98.85 346 1

5913 ad 1 99.98 99.98 94.83 98.26 371 1

5937 ad 1 100.00 100.00 0.00 66.67 0 0

5972 ad 1 99.99 99.99 90.80 96.93 337 1

6072 ad 1 100.00 100.00 0.00 66.67 0 0

6225 ad 1 99.98 99.98 5.75 68.57 66 0

6240 ad 1 99.99 99.96 96.55 98.83 431 1

189.33 ad 2 100.00 100.00 0.00 66.67 0 0

2356 ad 2 99.97 99.96 10.34 70.09 101 0

2375 ad 2 99.85 99.82 51.15 83.61 471 0

2380 ad 2 99.92 99.91 20.69 73.51 220 0

3465 ad 2 100.00 99.99 99.43 99.80 354 1

3853 ad 2 100.00 100.00 97.70 99.23 354 1

3862 ad 2 99.99 99.99 1.15 67.04 20 0

3875 ad 2 100.00 100.00 0.00 66.67 0 0

3930 ad 2 100.00 100.00 0.00 66.67 0 0

3973 ad 2 99.99 99.99 90.80 96.93 337 1

4392 ad 2 100.00 100.00 0.00 66.67 0 0

4474 ad 2 100.00 100.00 95.98 98.66 343 1

4504 ad 2 99.99 99.99 96.55 98.85 354 1

4528 ad 2 99.98 99.98 97.13 99.03 369 1

4591 ad 2 99.99 99.97 95.98 98.65 356 1

4686 ad 2 100.00 99.99 94.25 98.08 340 1

4712 ad 2 99.98 99.99 85.63 95.20 339 1

4747 ad 2 99.96 99.97 8.62 69.52 92 0

4765 ad 2 99.91 99.80 50.57 83.43 396 0

4820 ad 2 99.99 99.97 0.00 66.65 0 0

4832 ad 2 99.99 99.97 98.85 99.61 364 1

4857 ad 2 100.00 100.00 0.00 66.67 0

4903 ad 2 100.00 99.99 98.28 99.42 348 1

4925 ad 2 100.00 100.00 0.00 66.67 0 0

4955 ad 2 100.00 99.99 91.95 97.31 325 1

4971 ad 2 99.97 99.97 82.76 94.24 335 1

5046 ad 2 99.97 99.96 75.86 91.93 323 0

5070 ad 2 99.89 99.66 20.69 73.42 370 0

5089 ad 2 99.99 99.97 95.98 98.64 362 1

5123 ad 2 99.90 99.70 42.76 80.79 331 0

5247 ad 2 99.88 99.88 37.93 79.23 323 0

5410 ad 2 99.97 99.98 84.48 94.81 358 1
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SPV SD

5458 ad

5547 ad

3853 ad

4528 ad

4821 ad

2 100.00 99.99 95.40 98.46

2 99.99 99.97 94.25 98.07

3 99.99 99.98 97.04 99.01

3 99.99 99.99 95.98 98.65

3 99.99 100.00 96.55 98.85

Number of Sessions with TARGET perf > 80%:
Total Number of AD Sessions:

B.2 NORMAL CONTROL SUBJECTS

1

1

1

1

1

64

112

Patient Cls Vii T.O A V

10.22 cn 1

111.22 cn 1

1406 cn 1

182.33 cn 1

2316 cn 1

2330 cn 1

2344 cn 1

3092 cn 1

3178.02 cn 1

3197.01 cn 1

32.33 cn 1

3355 cn 1

354.01 cn 1

3569 cn 1

3661 cn 1

3678 cn 1

3691 cn 1

3720 cn 1

3723 cn 1

3725 cn 1

3726 cn 1

3741.01 cn 1

3798.02 cn 1

3798.03 cn 1

3868 cn 1

3879.01 cn 1

3950 cn 1

3980 cn 1

4031 cn 1

100.00 99.99 94.09

99.99 99.99 96.55

100.00 99.97 96.55

100.00 100.00 97.70

99.99 99.99 92.53

100.00 99.99 95.98

99.99 99.85 92.53

100.00 100.00 99.43

99.99 99.99 96.55

100.00 99.99 97.13

100.00 100.00 95.98

100.00 100.00 98.85

100.00 100.00 97.70

100.00 100.00 98.85

100.00 99.98 93.10

100.00 99.99 92.53

100.00 100.00 98.28

100.00 99.99 95.40

100.00 100.00 97.13

99.99 100.00 93.68

100.00 100.00 98.28

100.00 99.99 97.70

100.00 100.00 98.28

100.00 100.00 99.43

99.99 99.99 93.68

100.00 99.98 99.43

100.00 100.00 97.70

99.99 99.99 95.98

100.00 99.99 98.28

98.03

98.84

98.84

99.23

97.50

98.65

97.46

99.81

98.85

99.04

98.66

99.61

99.23

99.62

97.69

97.50

99.42

98.47

99.04

97.89

99.42

99.23

99.42

99.81

97.89

99.80

99.23

98.65

99.42

400

344

349

349

343

346

387

355

348

347

347

351

351

349

349

343

356

340

344

336

348

354

352

354

349

359

350

355

352

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
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1

1

1

1
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4110 cn 1 100.00 100.00 98.85 99.62 351 1

4128 cn 1 100.00 100.00 98.85 99.61 358 1

4138 cn 1 100.00 99.99 99.43 99.81 356 1

4219 cn 1 99.99 99.97 96.55 98.84 359 1

4380 cn 1 100.00 99.99 95.98 98.65 346 1

4635 cn 1 100.00 100.00 0.00 66.67 0 0

4636 cn 1 100.00 99.98 97.70 99.23 356 1

4662 cn 1 99.99 100.00 97.13 99.04 364 1

4717 cn 1 99.98 99.99 83.33 94.43 341 1

4850 cn 1 99.99 99.96 78.82 92.92 366 0

4907 cn 1 100.00 99.99 98.85 99.61 355 1

4968 cn 1 100.00 100.00 96.55 98.85 346 1

5106 cn 1 100.00 100.00 98.85 99.62 346 1

5108 cn 1 100.00 100.00 93.10 97.70 337 1

5195 cn 1 99.99 100.00 74.38 91.46 321 0

5241 cn 1 99.99 99.99 91.95 97.31 340 1

5322 cn 1 100.00 100.00 96.55 98.85 340 1

55.33 cn 1 99.99 99.93 90.23 96.72 359 1

5851 cn 1 100.00 99.98 97.70 99.23 359 1

6117 cn 1 100.00 100.00 0.00 66.67 0 0

6385 cn 1 100.00 100.00 0.00 66.67 0 0

6554 cn 1 100.00 99.99 97.13 99.04 348 1

67.33 cn 1 100.00 100.00 97.13 99.04 352 1

78.33 cn 1 100.00 100.00 98.85 99.62 353 1

10.22 cn 2 100.00 100.00 0.00 66.67 0 0

111.22 cn 2 100.00 100.00 0.00 66.67 0 0

1406 cn 2 100.00 99.99 98.85 99.61 352 1

2316 cn 2 99.99 99.78 94.25 98.01 417 1

3092 cn 2 100.00 100.00 97.70 99.23 349 1

32.33 cn 2 99.99 99.98 94.83 98.27 350 1

3355 cn 2 99.99 100.00 95.40 98.47 350 1

3569 cn 2 100.00 100.00 99.43 99.81 349 1

3661 cn 2 99.99 99.99 95.98 98.65 351 1

3678 cn 2 99.98 100.00 85.06 95.01 324 1

3691 cn 2 100.00 100.00 96.06 98.69 401 1

3726 cn 2 100.00 100.00 90.23 96.74 321 1

3741.01 cn 2 100.00 100.00 97.70 99.23 343 1

3798.01 cn 2 100.00 100.00 99.43 99.81 348 1

3798.02 cn 2 100.00 100.00 99.43 99.81 352 1

3798.03 cn 2 100.00 100.00 98.28 99.42 349 1

3868 cn 2 100.00 100.00 97.13 99.04 350 1
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Patn C

3950 cn 2 100.00 100.00 0.00 66.67 0 0

3980 cn 2 100.00 100.00 96.55 98.85 342 1

4138 cn 2 100.00 100.00 98.85 99.62 354 1

4219 cn 2 100.00 100.00 0.00 66.67 0 0

4380 cn 2 100.00 100.00 0.00 66.67 0 0

4662 cn 2 100.00 100.00 0.00 66.67 0 0

4684 cn 2 100.00 100.00 95.40 98.47 340 1

4717 cn 2 99.99 99.99 95.98 98.65 360 1

4968 cn 2 100.00 100.00 99.43 99.81 349 1

5106 cn 2 100.00 100.00 98.85 99.62 347 1

5108 cn 2 100.00 99.99 93.10 97.70 337 1

5195 cn 2 100.00 100.00 0.00 66.67 0 0

5322 cn 2 100.00 100.00 0.00 66.67 0 0

55.33 cn 2 99.99 99.99 94.83 98.27 350 1

67.33 cn 2 100.00 100.00 0.00 66.67 0 0

78.33 cn 2 100.00 99.99 98.85 99.61 354 1

1406 cn 3 100.00 100.00 98.85 99.62 348 1

3092 cn 3 100.00 100.00 98.85 99.62 348 1

3661 cn 3 99.99 100.00 90.23 96.74 326 1

3691 cn 3 100.00 100.00 98.85 99.62 353 1

3741.01 cn 3 100.00 100.00 97.70 99.23 347 1

3868 cn 3 100.00 100.00 95.40 98.47 334 1

4380 cn 3 100.00 100.00 98.28 99.43 346 1

4907 cn 3 100.00 99.99 97.13 99.04 342 1

Number of Sessions with TARGET perf > 80%: 80

Total Number of CN Sessions: 94

B.3 MILD COGNITIVE IMPAIRMENT SUBJECTS

11.33 mci 1 100.00 99.99 94.25 98.08 345 1

135.33 mci 1 100.00 100.00 96.55 98.85 351 1

149.22 mci 1 99.99 99.97 90.80 96.92 351 1

160.22 mci 1 99.98 99.98 81.03 93.66 323 1

160.33 mci 1 99.99 100.00 95.98 98.66 354 1

2104 mci 1 100.00 99.99 92.12 97.37 381 1

2385 mci 1 99.98 99.96 66.09 88.68 308 0

2387 mci 1 100.00 100.00 96.55 98.85 347 1

3325 mci 1 100.00 100.00 0.00 66.67 0 0

3505 mci 1 99.96 99.95 70.69 90.20 310 0

3536 mci 1 100.00 100.00 0.00 66.67 0 0

i-
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5319 mci 1 99.98 99.98 66.67 88.88 239 0

5439 mci 1 99.99 99.99 86.21 95.40 321 1

5446 mci 1 99.99 99.93 90.15 96.69 417 1

5474 mci 1 99.98 99.98 94.25 98.07 357 1

5477 mci 1 99.96 99.95 57.14 85.69 324 0

5569 mci 1 100.00 100.00 98.28 99.42 351 1

5647 mci 1 99.98 99.99 89.66 96.54 415 1

5671 mci 1 100.00 100.00 97.13 99.04 340 1

5718 mci 1 100.00 100.00 0.00 66.67 0 0

5722 mci 1 99.99 99.99 97.70 99.23 354 1

5822 mci 1 99.98 99.97 90.23 96.73 357 1

5853 mci 1 100.00 100.00 0.00 66.67 0 0

5855 mci 1 99.99 99.99 94.25 98.08 338 1

5864 mci 1 99.99 99.98 99.43 99.80 365 1

5907 mci 1 99.98 100.00 96.55 98.84 427 1

5946 mci 1 100.00 100.00 0.00 66.67 0 0

6069 mci 1 100.00 100.00 0.00 66.67 0 0

6077 mci 1 99.99 99.98 65.52 88.50 252 0

6123 mci 1 100.00 100.00 0.00 66.67 0 0

6139 mci 1 100.00 100.00 0.00 66.67 0 0

6170 mci 1 100.00 100.00 95.98 98.66 338 1

6428 mci 1 100.00 100.00 99.43 99.81 348 1

6511 mci 1 100.00 100.00 98.85 99.62 345 1

6692 mci 1 100.00 100.00 95.98 98.66 340 1

6720 mci 1 99.99 100.00 94.83 98.27 341 1

11.33 mci 2 99.99 99.96 95.40 98.45 356 1

149.22 mci 2 99.99 99.99 94.25 98.08 356 1

2344 mci 2 100.00 100.00 0.00 66.67 0 0

3505 mci 2 99.97 99.97 58.62 86.19 265 0

36.22 mci 2 99.92 99.55 16.38 71.95 204 0

3981 mci 2 100.00 99.99 93.10 97.70 283 1

4015 mci 2 99.99 99.97 0.00 66.66 0 0

4308 mci 2 100.00 100.00 0.00 66.67 0 0

4360 mci 2 99.98 99.98 14.37 71.44 85 0

4376 mci 2 99.98 99.99 54.02 84.67 215 0

4548 mci 2 100.00 99.99 98.85 99.61 354 1

4688 mci 2 100.00 100.00 0.00 66.67 0 l

4729 mci 2 100.00 100.00 97.13 99.04 345 1

4761 mci 2 100.00 99.99 97.70 99.23 340 1

4821 mci 2 100.00 99.99 95.98 98.65 346 1

4839 mci 2 99.99 99.99 98.85 99.61 364 1
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4842 mci 2 100.00 99.99 99.43 99.81 355 1

4907 mci 2 100.00 100.00 98.85 99.61 352 1

4910 mci 2 100.00 100.00 97.13 99.04 347 1

4961 mci 2 99.99 99.99 94.25 98.08 345 1

4975 mci 2 99.98 99.56 32.18 77.24 317 0

5219 mci 2 100.00 100.00 0.00 66.67 0 0

5231 mci 2 99.98 99.96 90.80 96.91 362 1

5241 mci 2 100.00 100.00 0.00 66.67 0 0

5439 mci 2 100.00 100.00 90.80 96.93 320 1

5477 mci 2 99.99 99.98 90.80 96.93 334 1

5855 mci 2 100.00 100.00 97.13 99.04 342 1

3505 mci 3 100.00 100.00 0.00 66.67 0 0

4729 mci 3 100.00 99.99 98.85 99.61 356 1

Number of Sessions with TARGET perf > 80%: 72

Total Number of MCI Sessions: 105

B.4 PARKINSON'S DISEASE SUBJECTS

4565 pd 1 99.99 99.99 97.13 99.04 356 1

4569 pd 1 100.00 100.00 98.85 99.62 354 1

4594 pd 1 100.00 100.00 97.70 99.23 352 1

4598 pd 1 99.99 100.00 97.13 99.04 362 1

4605 pd 1 99.99 99.99 97.70 99.23 359 1

4663 pd 1 100.00 100.00 95.40 98.47 349 1

4727 pd 1 99.99 99.89 91.63 97.17 451 1

4754 pd 1 99.99 99.98 95.98 98.65 361 1

4760 pd 1 100.00 99.97 85.06 95.01 319 1

4808 pd 1 100.00 100.00 85.06 95.02 309 1

4854 pd 1 99.99 99.92 92.12 97.34 423 1

4877 pd 1 99.98 99.96 75.29 91.74 313 0

4878 pd 1 99.99 99.99 91.95 97.31 352 1

4886 pd 1 100.00 100.00 98.85 99.62 349 1

4902 pd 1 100.00 99.99 99.43 99.81 359 1

4956 pd 1 99.99 99.99 94.25 98.08 342 1

4963 pd 1 99.99 100.00 94.83 98.27 340 1

4967 pd 1 99.99 100.00 98.28 99.42 352 1

4979 pd 1 100.00 100.00 99.43 99.81 350 1

4985 pd 1 100.00 100.00 98.85 99.61 349 1

500.99 pd 1 100.00 100.00 97.13 99.04 352 1

5045 pd 1 100.00 99.99 98.28 99.42 352 1
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5049 pd 1 99.98 99.99 90.23 96.73 347 1

5054 pd 1 100.00 100.00 99.43 99.81 352 1

5056 pd 1 100.00 100.00 97.13 99.04 348 1

5069 pd 1 99.99 99.98 92.53 97.50 347 1

5079 pd 1 100.00 100.00 97.70 99.23 348 1

5104 pd 1 100.00 100.00 98.85 99.62 351 1

5160 pd 1 99.99 99.97 87.93 95.96 340 1

5183 pd 1 100.00 100.00 97.70 99.23 345 1

5198 pd 1 99.99 99.99 92.53 97.50 339 1

5207 pd 1 100.00 100.00 98.85 99.62 352 1

5224 pd 1 100.00 100.00 99.43 99.81 351 1

5226 pd 1 99.99 99.96 97.13 99.03 365 1

5234 pd 1 99.98 99.99 51.72 83.90 202 0

5235 pd 1 100.00 100.00 91.95 97.32 326 1

5256 pd 1 99.99 100.00 95.98 98.66 345 1

5262 pd 1 100.00 100.00 98.28 99.42 356 1

5263 pd 1 100.00 100.00 94.83 98.28 343 1

5265 pd 1 100.00 99.99 95.98 98.66 348 1

5271 pd 1 99.99 99.98 92.53 97.50 343 1

5272 pd 1 100.00 99.99 97.13 99.04 349 1

5277 pd 1 99.99 99.98 90.23 96.74 328 1

5278 pd 1 100.00 100.00 98.85 99.62 353 1

5298 pd 1 99.99 99.99 95.98 98.65 355 1

5324 pd 1 100.00 100.00 97.13 99.04 351 1

5331 pd 1 100.00 99.99 98.85 99.61 355 1

5341 pd 1 100.00 100.00 99.43 99.81 355 1

5346 pd 1 100.00 99.99 97.13 99.04 358 1

5366 pd 1 100.00 100.00 99.43 99.81 350 1

5421 pd 1 100.00 100.00 98.85 99.62 348 1

5426 pd 1 99.99 100.00 93.10 97.70 341 1

5430 pd 1 100.00 100.00 99.43 99.81 354 1

5438 pd 1 100.00 100.00 99.01 99.67 412 1

5457 pd 1 99.99 99.98 95.40 98.46 353 1

5487 pd 1 100.00 100.00 99.43 99.81 350 1

5494 pd 1 99.99 100.00 90.80 96.93 333 1

5500 pd 1 99.98 99.97 94.25 98.07 364 1

5503 pd 1 100.00 100.00 93.68 97.89 335 1

5507 pd 1 99.99 100.00 96.55 98.85 355 1

5525 pd 1 99.99 99.97 95.98 98.65 363 1

5553 pd 1 99.99 100.00 98.85 99.62 357 1

5554 pd 1 100.00 100.00 97.70 99.23 351 1
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5584 pd 1 100.00 99.99 97.70 99.23 353 1

5594 pd 1 99.98 99.97 67.82 89.26 259 0

5609 pd 1 100.00 99.99 95.40 98.46 343 1

5627 pd 1 99.99 99.98 82.18 94.05 306 1

5635 pd 1 100.00 99.99 97.70 99.23 353 1

5672 pd 1 100.00 100.00 98.28 99.43 350 1

5696 pd 1 100.00 100.00 98.85 99.62 351 1

5723 pd 1 100.00 99.99 98.85 99.61 359 1

5725 pd 1 100.00 99.99 96.55 98.85 345 1

5744 pd 1 100.00 100.00 98.85 99.62 348 1

5754 pd 1 100.00 99.99 93.68 97.89 334 1

5756 pd 1 99.99 100.00 97.70 99.23 350 1

5767 pd 1 99.99 100.00 97.70 99.23 357 1

5770 pd 1 100.00 100.00 99.43 99.81 352 1

5774 pd 1 100.00 99.99 99.43 99.81 353 1

5794 pd 1 100.00 100.00 98.28 99.43 350 1

5795 pd 1 100.00 100.00 98.85 99.62 353 1

5804 pd 1 100.00 100.00 96.55 98.85 341 1

5835 pd 1 99.98 99.98 73.56 91.17 277 0

5866 pd 1 100.00 100.00 98.62 99.54 294 1

5880 pd 1 98.64 98.87 26.60 74.70 6134 0

5891 pd 1 100.00 100.00 98.85 99.62 354 1

5903 pd 1 99.95 99.92 83.33 94.40 373 1

5959 pd 1 99.98 99.97 89.08 96.34 340 1

5961 pd 1 100.00 100.00 98.28 99.42 351 1

5997 pd 1 100.00 99.99 99.43 99.80 356 1

6064 pd 1 100.00 100.00 94.25 98.08 335 1

6087 pd 1 100.00 100.00 95.98 98.66 346 1

6093 pd 1 100.00 100.00 99.43 99.81 355 1

6148 pd 1 100.00 100.00 0.00 66.67 0 0

6151 pd 1 100.00 100.00 0.00 66.67 0 0

6152 pd 1 100.00 100.00 95.40 98.47 352 1

6160 pd 1 100.00 99.99 95.98 98.65 346 1

6188 pd 1 100.00 100.00 97.13 99.04 345 1

6226 pd 1 100.00 100.00 99.43 99.81 356 1

6258 pd 1 100.00 100.00 0.00 66.67 0 0

6332 pd 1 100.00 100.00 0.00 66.67 0 0

6392 pd 1 100.00 100.00 0.00 66.67 0 0

6401 pd 1 100.00 100.00 0.00 66.67 0 0

6425 pd 1 100.00 100.00 0.00 66.67 0 0

6460 pd 1 100.00 99.99 89.08 96.36 315 1
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6483 pd 1 99.99 99.99 93.68 97.89 335 1

6509 pd 1 100.00 100.00 0.00 66.67 0 0

6538 pd 1 100.00 99.99 98.85 99.61 350 1

6553 pd 1 100.00 100.00 98.85 99.62 349 1

6567 pd 1 99.99 100.00 95.98 98.66 342 1

3725 pd 2 99.99 99.99 85.06 95.02 311 1

4565 pd 2 100.00 100.00 0.00 66.67 0 0

4594 pd 2 100.00 100.00 0.00 66.67 0 0

4605 pd 2 100.00 100.00 81.61 93.87 290 1

4663 pd 2 100.00 100.00 99.43 99.81 352 1

4727 pd 2 99.99 99.99 95.40 98.46 346 1

4760 pd 2 99.99 99.96 89.66 96.54 346 1

4808 pd 2 100.00 100.00 0.00 66.67 0 0

4878 pd 2 99.46 99.76 41.38 80.20 3969 0

4886 pd 2 100.00 100.00 0.00 66.67 0 0

4902 pd 2 100.00 100.00 97.13 99.04 345 1

4963 pd 2 100.00 100.00 0.00 66.67 0 0

4967 pd 2 99.92 99.74 31.03 76.90 318 0

4979 pd 2 100.00 100.00 99.43 99.81 349 0

500.99 pd 2 100.00 100.00 0.00 66.67 0 1

5045 pd 2 100.00 99.98 95.98 98.65 343

5054 pd 2 100.00 100.00 99.43 99.81 347 1

5056 pd 2 100.00 99.99 97.13 99.04 344 1

5079 pd 2 100.00 100.00 0.00 66.67 0 1

5104 pd 2 100.00 100.00 0.00 66.67 0 0

5183 pd 2 100.00 100.00 85.63 95.21 296 0

5198 pd 2 99.99 99.98 87.36 95.77 328 0

5234 pd 2 99.98 99.98 35.06 78.34 154 1

5235 pd 2 100.00 100.00 99.43 99.81 351 1

5256 pd 2 99.99 99.99 89.08 96.35 330 0

5262 pd 2 100.00 100.00 0.00 66.67 0 1

5265 pd 2 99.99 99.99 91.38 97.12 336 1

5272 pd 2 100.00 100.00 94.83 98.27 336 0

5278 pd 2 100.00 100.00 97.13 99.04 343 1

5298 pd 2 100.00 100.00 94.25 98.08 336 1

5324 pd 2 100.00 100.00 97.70 99.23 343 1

5331 pd 2 100.00 99.99 97.70 99.23 345 1

5346 pd 2 100.00 99.98 96.55 98.84 349 1

5421 pd 2 100.00 100.00 99.43 99.81 348 1

5430 pd 2 100.00 100.00 99.43 99.81 349 1
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5457 pd 2 100.00 99.99 98.28 99.42 348 1
5487 pd 2 100.00 100.00 99.43 99.81 349 1
5554 pd 2 100.00 100.00 95.40 98.47 340 1
5594 pd 2 99.94 99.98 46.55 82.16 264 1
5672 pd 2 100.00 100.00 96.55 98.85 340 1
5696 pd 2 100.00 100.00 98.85 99.62 348 0
5795 pd 2 100.00 100.00 98.28 99.42 348 1
5835 pd 2 99.97 99.97 70.11 90.02 282 1
5891 pd 2 99.99 100.00 97.13 99.04 349 1
5959 pd 2 99.97 99.97 85.63 95.19 334 0

5961 pd 2 100.00 100.00 99.43 99.81 348 1

Number of Sessions with TARGET perf > 80%: 126
Total Number of PD Sessions: 155

B.5 PARKINSON'S DISEASE WITH DEMENTIA SUBJECTS

238.99 pdd 1 100.00 100.00 0.00 66.67 0 0
4728 pdd 1 99.89 99.78 32.18 77.28 364 0
4818 pdd 1 99.98 99.84 52.30 84.04 295 0
4972 pdd 1 99.77 99.58 57.47 85.61 705 0
5043 pdd 1 99.99 100.00 67.82 89.27 275 0
5264 pdd 1 99.98 99.97 85.71 95.22 397 1

5312 pdd 1 100.00 100.00 0.00 66.67 0 0

5476 pdd 1 99.99 99.99 94.25 98.08 345 1

5552 pdd 1 100.00 100.00 0.00 66.67 0 0
5755 pdd 1 99.96 99.97 81.61 93.85 340 1

5935 pdd 1 100.00 100.00 0.00 66.67 0
6030 pdd 1 99.98 99.98 78.16 92.71 307 0
6195 pdd 1 100.00 100.00 0.00 66.67 0 0
6237 pdd 1 100.00 100.00 0.00 66.67 0 0

6289 pdd 1 99.99 99.99 97.13 99.04 358 1

4598 pdd 2 99.99 99.99 95.40 98.46 349 1

4754 pdd 2 100.00 100.00 0.00 66.67 0 0
5043 pdd 2 99.99 99.99 37.36 79.11 150 0
5069 pdd 2 100.00 99.99 94.83 98.27 346 1

5494 pdd 2 99.98 99.99 70.11 90.03 292 0

Number of Sessions with TARGET perf > 80%: 6
Total Number of PDD Sessions: 20
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B.6 BUTTON PRESS ACCURACY STATISTICS (COHORT B)

Sessions with Target Perf > 80%: 348 71.60% of total

Session Counts: AD CN MCI PD PDD
1st: 328 75 53 76 109 15

2nd: 145 34 33 27 5 46

3rd: 13 3 8 2 0 0

Total Checked: 486

Four sessions not checked (total sessions is 490). This is because of either not enough

trials for the subject were present, or due to corrupt files unable to be loaded in

MATLAB for some reason.

NED: not enough data (too few trials, needs at least 4 trials)

FAIL: could not load data file in MATLAB (corrupt)

Total Sessions Available for Each Class:

AD CN MCI PD PDD Overall

112 94 105 155 20 486

Average Target Button Press Performance:

AD CN MCI PD PDD Overall

78.05 95.90 75.58 93.01 64.78 81.47

Note: Any trials with 'events' less than 200 were omitted from these average calculations-

-this was done due to the hardware failure that occurred with the button mechanism at

one point. Any event-count less than 200 for any given trial generally indicates button

failure (not patient mistakes).
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APPENDIX C: ERP SUBJECT ANALYSIS

Analysis was performed for all subjects used in this study to determine the clarity

and accuracy of their respective ERPs. A complete collection of all 202 AD/CN and 272

MCI/PD/PDD figures is provided in both an online (compressed ZIP archive) and hard

copy (CD media) format. upon request (please contact via email mahiskali a ieee.org or

polikararowan.edu for a full electronic copy of all patient figures). A sample of such a

figure is shown in Figure 39.
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Figure 39 Sample ERP. fbr sub/ect analysis
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